• Canac, Y. et al. Isolation of a benzene valence isomer with one-electron phosphorus-phosphorus bonds. Science 279, 2080–2082 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Moret, M., Zhang, L. & Peters, J. C. A polar copper–boron one-electron σ-bond. J. Am. Chem. Soc. 135, 3792–3795 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hübner, A. et al. Confirmed by X-ray crystallography: the BB one-electron σ bond. Angew. Chem. Int. Ed. 53, 4832–4835 (2014).

    Article 

    Google Scholar
     

  • Graziano, B. J. et al. One-electron bonds in copper–aluminum and copper–gallium complexes. Chem. Sci. 13, 6525–6531 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishigaki, Y., Shimajiri, T., Takeda, T., Katoono, R. & Suzuki, T. Longest C–C single bond among neutral hydrocarbons with a bond length beyond 1.8 Å. Chem 4, 795–806 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shimajiri, T. The Nature of Ultralong C–C Bonds (Springer Nature, 2023).

  • Pauling, L. The nature of the chemical bond. II. The one-electron bond and the three-electron bond. J. Am. Chem. Soc. 53, 3225–3237 (1931).

    Article 
    CAS 

    Google Scholar
     

  • Lewis, G. N. The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916).

    Article 
    CAS 

    Google Scholar
     

  • Langmuir, I. The arrangement of electrons in atoms and molecules. J. Franklin Inst. 187, 359–362 (1919).

    Article 

    Google Scholar
     

  • Clark, T. Odd-electron .sigma. bonds. J. Am. Chem. Soc. 110, 1672–1678 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Ioffe, A. & Shaik, S. Ethane cation-radical isomers and their interconversion pathways. Electron shift isomerism in cation radicals. J. Chem. Soc., Perkin Trans. 2 3, 1461 (1993).

    Article 

    Google Scholar
     

  • Zuilhof, H., Dinnocenzo, J. P., Reddy, C. & Shaik, S. Comparative study of ethane and propane cation radicals by B3LYP density functional and high-level ab initio methods. J. Phys. Chem. 100, 15774–15784 (1996).

    Article 
    CAS 

    Google Scholar
     

  • de Sousa, D. W. O. & Nascimento, M. A. C. One-electron bonds are not ‘half-bonds’. Phys. Chem. Chem. Phys. 21, 13319–13336 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Claxton, T. A., Overill, R. E. & Symons, M. C. R. Possible structures for C2H6+ and B2H6 E.S.R. evidence and UHF calculations. Mol. Phys. 27, 701–706 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • DuPont, T. J. & Mills, J. L. Arylborane anions. Electrochemical study. J. Am. Chem. Soc. 97, 6375–6382 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Hudson, R. L. & Williams, F. Electron spin resonance spectrum of trimethyl borate ([(MeO)3B.cntdot.B(OMe)3]−). A novel .sigma. radical with a one-electron bond. J. Am. Chem. Soc. 99, 7714–7716 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Kasai, P. H. & McLeod, D. Electron spin resonance study of molecular anions generated in argon matrix at 4°K: ESR spectrum of B2H6. J. Chem. Phys. 51, 1250–1251 (1969).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iwasaki, M., Toriyama, K. & Nunome, K. Electron spin resonance study of electronic and geometrical structures of C2H6+ and other simple alkane cations at 4.2 K: possible evidence for Jahn–Teller distortion. J. Am. Chem. Soc. 103, 3591–3592 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. T. & Williams, F. E.S.R. spectra of the hexamethyldisilane and hexamethyldigermane radical cations. J. Chem. Soc. Chem. Commun. 1981, 666–668 (1981).

    Article 

    Google Scholar
     

  • Shida, T., Kubodera, H. & Egawa, Y. Confirmation of the cation radicals of hexamethylethane and hexamethyldisilane by ESR and other spectroscopy. Chem. Phys. Lett. 79, 179–182 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoefelmeyer, J. D. & Gabbaï, F. P. An intramolecular boron–boron one-electron σ-bond. J. Am. Chem. Soc. 122, 9054–9055 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Cataldo, L. et al. Formation of a phosphorus–phosphorus bond by successive one-electron reductions of a two-phosphinines-containing macrocycle: crystal structures, EPR, and DFT investigations. J. Am. Chem. Soc. 123, 6654–6661 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rao, V. R. & Hixson, S. S. Arylcyclopropane photochemistry. Electron-transfer-mediated photochemical addition of methanol to arylcyclopropanes. J. Am. Chem. Soc. 101, 6458–6459 (1979).

    Article 
    CAS 

    Google Scholar
     

  • Dinnocenzo, J. P., Todd, W. P., Simpson, T. R. & Gould, I. R. Nucleophilic cleavage of one-electron .sigma. bonds: stereochemistry and cleavage rates. J. Am. Chem. Soc. 112, 2462–2464 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Miyashi, T., Ikeda, H., Konno, A., Okitsu, O. & Takahashi, Y. Photoinduced electron-transfer reactions of the cope and related systems. Pure Appl. Chem. 62, 1531–1538 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Ikeda, H. et al. Photoinduced electron-transfer degenerate cope rearrangement of 2,5-diaryl-1,5-hexadienes: a cation-radical cyclization–diradical cleavage mechanism. J. Am. Chem. Soc. 120, 87–95 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Ikeda, H. et al. Photoinduced electron-transfer cope rearrangements of 3,6-diaryl-2,6-octadienes and 2,5-diaryl-3,4-dimethyl-1,5-hexadienes: stereospecificity and an unexpected formation of the bicyclo[2.2.0]hexane derivatives. J. Org. Chem. 64, 1640–1649 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda, H., Hoshi, Y. & Miyashi, T. 1,3-Bis(4-methoxyphenyl)cyclohexane-1,3-diyl cation radical: divergent reactivity depending upon electron-transfer conditions. Tetrahedron Lett. 42, 8485–8488 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Gomberg, M. Triphenylmethyl, ein Fall von dreiwerthigem Kohlenstoff. Ber. Dtsch. Chem. Ges. 33, 3150–3163 (1900).

    Article 
    CAS 

    Google Scholar
     

  • Gomberg, M. An instance of trivalent carbon: triphenylmethyl. J. Am. Chem. Soc. 22, 757–771 (1900).

    Article 

    Google Scholar
     

  • Kahr, B., Van Engen, D. & Mislow, K. Length of the ethane bond in hexaphenylethane and its derivatives. J. Am. Chem. Soc. 108, 8305–8307 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Takeda, T. et al. Hexaphenylethanes with an ultralong C–C bond: expandability of the C–C bond in highly strained tetraarylpyracenes. Chem. Lett. 42, 954–962 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Suzuki, T. et al. Expandability of ultralong C–C bonds: largely different C1–C2 bond lengths determined by low-temperature X-ray structural analyses on pseudopolymorphs of 1,1-bis(4-fluorophenyl)-2,2-bis(4-methoxyphenyl)pyracene. Chem. Lett. 43, 86–88 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Shimajiri, T., Suzuki, T. & Ishigaki, Y. Flexible C–C bonds: reversible expansion, contraction, formation, and scission of extremely elongated single bonds. Angew. Chem. Int. Ed. 59, 22252–22257 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dyker, G., Hagel, M., Henkel, G. & Köckerling, M. Naphthyl-substituted carbocations: from peri interaction to cyclization. Eur. J. Org. Chem. 2008, 3095–3101 (2008).

    Article 

    Google Scholar
     

  • Cordoneanu, A., Drewitt, M. J., Bavarian, N. & Baird, M. C. Synthesis and characterization of weakly coordinating anion salts of a new, stable carbocationic reagent, the dibenzosuberenyl (dibenzotropylium) ion. New J. Chem. 32, 1890 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Nishiuchi, T. et al. Anthracene‐attached persistent tricyclic aromatic hydrocarbon radicals. Chem. Asian J. 14, 1830–1836 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, D., Rosokha, S. V. & Kochi, J. K. Donor-acceptor (electronic) coupling in the precursor complex to organic electron transfer: intermolecular and intramolecular self-exchange between phenothiazine redox centers. J. Am. Chem. Soc. 126, 1388–1401 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Small, D. et al. Intermolecular π-to-π bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. J. Am. Chem. Soc. 126, 13850–13858 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nojo, W., Ishigaki, Y., Takeda, T., Akutagawa, T. & Suzuki, T. Selective formation of a mixed-valence state from linearly bridged oligo(aromatic diamines): drastic structural change into a folded columnar stack for half-filled polycations. Chem. Eur. J. 25, 7759–7765 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casado, J. et al. Evidence for multicenter bonding in dianionic tetracyanoethylene dimers by Raman spectroscopy. Angew. Chem. Int. Ed. 52, 6421–6425 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kubo, T. et al. Long carbon-carbon bonding beyond 2 Å in Tris(9-fluorenylidene)methane. J. Am. Chem. Soc. 143, 14360–14366 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dutan, C. et al. Electron transfer between two silyl-substituted phenylene rings: EPR/ENDOR spectra, DFT calculations, and crystal structure of the one-electron reduction compound of a Di(m-silylphenylenedisiloxane). J. Am. Chem. Soc. 125, 4487–4494 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frisch, J. M. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2019).

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Glendening, E. D., Reed, A. E., Carpenter, J. E. & Weinhold, F. NBO v.3.1 (Gaussian, Inc., 2001).

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 71, 3–8 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link


    administrator