[ad_1]

  • Kouveliotou, C. et al. An X-ray pulsar with a superstrong magnetic field in the soft γ-ray repeater SGR1806−20. Nature 393, 235–237 (1998).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • CHIME/FRB Collaboration A bright millisecond-duration radio burst from a Galactic magnetar. Nature 587, 54–58 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Mereghetti, S. et al. INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154. Astrophys. J. Lett. 898, L29 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature 587, 59–62 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Giri, U. et al. Comprehensive Bayesian analysis of FRB-like bursts from SGR 1935+2154 observed by CHIME/FRB. Preprint at https://arxiv.org/abs/2310.16932 (2023).

  • Maan, Y., Leeuwen, J. V., Straal, S. & Pastor-Marazuela, I. GBT detection of bright 5 GHz radio bursts from SGR 1935+2154, coincident with X-ray and 600 MHz bursts. The Astronomer’s Telegram 15697 (2022).

  • Espinoza, C. M., Lyne, A. G., Stappers, B. W. & Kramer, M. A study of 315 glitches in the rotation of 102 pulsars. Mon. Not. R. Astron. Soc. 414, 1679–1704 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Yu, M. et al. Detection of 107 glitches in 36 southern pulsars. Mon. Not. R. Astron. Soc. 429, 688–724 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Basu, A. et al. The Jodrell Bank glitch catalogue: 106 new rotational glitches in 70 pulsars. Mon. Not. R. Astron. Soc. 510, 4049–4062 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Younes, G. et al. Magnetar spin-down glitch clearing the way for FRB-like bursts and a pulsed radio episode. Nat. Astron. 7, 339–350 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Israel, G. L. et al. The discovery, monitoring and environment of SGR J1935+2154. Mon. Not. R. Astron. Soc. 457, 3448–3456 (2016).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Younes, G. et al. X-ray and radio observations of the magnetar SGR J1935+2154 during its 2014, 2015, and 2016 outbursts. Astrophys. J. 847, 85 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Younes, G. et al. NICER view of the 2020 burst storm and persistent emission of SGR 1935+2154. Astrophys. J. Lett. 904, L21 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Mereghetti, S. et al. INTEGRAL detection of a burst from SGR J1935+2154. GRB Coord. Netw. Circ. No. 32675 (2022).

  • Palm, D. M. Multiple bursts from SGR J1935+2154. The Astronomer’s Telegram 15667 (2022).

  • Younes, G. et al. NICER detection of over 100 bursts and enhanced persistent emission from SGR 1935+2154. The Astronomer’s Telegram 15674 (2022).

  • Livingstone, M. A. et al. X-ray and radio timing of the pulsar in 3C 58. Astrophys. J. 706, 1163–1173 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Dib, R. & Kaspi, V. M. 16 yr of RXTE monitoring of five anomalous X-ray pulsars. Astrophys. J. 784, 37 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hu, C. P. & Ng, C. Y. On the connection between radiative outbursts and timing irregularities in magnetars. Astron. Nachr. 340, 340–345 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ge, M.-Y. et al. Spin evolution of the magnetar SGR J1935+2154. Res. Astron. Astrophys. 24, 015016 (2024).

  • Younes, G. et al. Broadband X-ray burst spectroscopy of the fast-radio-burst-emitting Galactic magnetar. Nat. Astron. 5, 408–413 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Enoto, T. et al. Magnetar broadband X-ray spectra correlated with magnetic fields: Suzaku archive of SGRs and AXPs combined with NuSTAR, Swift, and RXTE. Astrophys. J. Suppl. Ser. 231, 8 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, P. et al. Revisiting the distance, environment and supernova properties of SNR G57.2+0.8 that hosts SGR 1935+2154. Astrophys. J. 905, 99 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Anderson, P. W. & Itoh, N. Pulsar glitches and restlessness as a hard superfluidity phenomenon. Nature 256, 25–27 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Link, B. & Epstein, R. I. Thermally driven neutron star glitches. Astrophys. J. 457, 844 (1996).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Eichler, D. & Shaisultanov, R. Dynamical oscillations and glitches in anomalous X-ray pulsars. Astrophys. J. Lett. 715, L142–L145 (2010).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Thompson, C., Lyutikov, M. & Kulkarni, S. R. Electrodynamics of magnetars: implications for the persistent X-ray emission and spin-down of the soft gamma repeaters and anomalous X-ray pulsars. Astrophys. J. 574, 332–355 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Hu, K., Baring, M. G., Harding, A. K. & Wadiasingh, Z. High-energy photon opacity in the twisted magnetospheres of magnetars. Astrophys. J. 940, 91 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wadiasingh, Z. & Timokhin, A. Repeating fast radio bursts from magnetars with low magnetospheric twist. Astrophys. J. 879, 4 (2019).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Gendreau, K. C. et al. The Neutron star Interior Composition Explorer (NICER): design and development. Proc. SPIE 9905, 99051H (2016).

  • Bachetti, M. et al. Timing calibration of the NuSTAR X-ray telescope. Astrophys. J. 908, 184 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Scargle, J. D., Norris, J. P., Jackson, B. & Chiang, J. Studies in astronomical time series analysis. VI. Bayesian block representations. Astrophys. J. 764, 167 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Buccheri, R. et al. Search for pulsed gamma-ray emission from radio pulsars in the COS-B data. Astron. Astrophys. 128, 245–251 (1983).

    CAS 
    ADS 

    Google Scholar
     

  • Olausen, S. A. & Kaspi, V. M. The McGill Magnetar Catalog. Astrophys. J. Suppl. Ser. 212, 6 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Ray, P. S. et al. Precise γ-ray timing and radio observations of 17 Fermi γ-ray pulsars. Astrophys. J. Suppl. Ser. 194, 17 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Luo, J. et al. PINT: a modern software package for pulsar timing. Astrophys. J. 911, 45 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Remillard, R. A. et al. An empirical background model for the NICER X-ray timing instrument. Astron. J. 163, 130 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Wilms, J., Allen, A. & McCray, R. On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Haskell, B. & Melatos, A. Models of pulsar glitches. J. Mod. Phys. D 24, 1530008 (2015).

    Article 
    MathSciNet 
    CAS 
    ADS 

    Google Scholar
     

  • Link, B., Epstein, R. I. & Lattimer, J. M. Pulsar constraints on neutron star structure and equation of state. Phys. Rev. Lett. 83, 3362–3365 (1999).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Andersson, N., Glampedakis, K., Ho, W. C. G. & Espinoza, C. M. Pulsar glitches: the crust is not enough. Phys. Rev. Lett. 109, 241103 (2012).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Chamel, N. Crustal entrainment and pulsar glitches. Phys. Rev. Lett. 110, 011101 (2013).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Ho, W. C. G., Espinoza, C. M., Antonopoulou, D. & Andersson, N. Pinning down the superfluid and measuring masses using pulsar glitches. Sci. Adv. 1, e1500578 (2015).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Alpar, M. A., Anderson, P. W., Pines, D. & Shaham, J. Giant glitches and pinned vorticity in the VELA and other pulsars. Astrophys. J. Lett. 249, L29–L33 (1981).

    Article 
    ADS 

    Google Scholar
     

  • Mahlmann, J. F. et al. Electromagnetic fireworks: fast radio bursts from rapid reconnection in the compressed magnetar wind. Astrophys. J. Lett. 932, L20 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wolfson, R. Shear-induced opening of the coronal magnetic field. Astrophys. J. 443, 810 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Potekhin, A. Y. Electron conduction in magnetized neutron star envelopes. Astron. Astrophys. 351, 787–797 (1999).

    ADS 

    Google Scholar
     

  • Baring, M. G. & Harding, A. K. Resonant Compton upscattering in anomalous X-ray pulsars. Astrophys. Space Sci. 308, 109–118 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Fernández, R. & Thompson, C. Resonant cyclotron scattering in three dimensions and the quiescent nonthermal X-ray emission of magnetars. Astrophys. J. 660, 615–640 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Wadiasingh, Z., Baring, M. G., Gonthier, P. L. & Harding, A. K. Resonant inverse Compton scattering spectra from highly magnetized neutron stars. Astrophys. J. 854, 98 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Baring, M. G., Wadiasingh, Z. & Gonthier, P. L. Cooling rates for relativistic electrons undergoing Compton scattering in strong magnetic fields. Astrophys. J. 733, 61 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Wadiasingh, Z. et al. The fast radio burst luminosity function and death line in the low-twist magnetar model. Astrophys. J. 891, 82 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *