Herzog, D., Seyda, V., Wycisk, E. & Emmelmann, C. Additive manufacturing of metals. Acta Mater. 117, 371–392 (2016).
DebRoy, T. et al. Additive manufacturing of metallic components – process, structure and properties. Prog. Mater Sci. 92, 112–224 (2018).
Sanaei, N. & Fatemi, A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review. Prog. Mater Sci. 117, 100724 (2021).
Becker, T. H., Kumar, P. & Ramamurty, U. Fracture and fatigue in additively manufactured metals. Acta Mater. 219, 117240 (2021).
Donachie, M. J. Titanium: A Technical Guide 2nd edn (ASM International, 2000).
Greitemeier, D., Palm, F., Syassen, F. & Melz, T. Fatigue performance of additive manufactured TiAl6V4 using electron and laser beam melting. Int. J. Fatigue 94, 211–217 (2017).
Su, C., Yu, H., Wang, Z., Yang, J. & Zeng, X. Controlling the tensile and fatigue properties of selective laser melted Ti–6Al–4 V alloy by post treatment. J. Alloys Compd. 857, 157552 (2021).
Bustillos, J., Kim, J. & Moridi, A. Exploiting lack of fusion defects for microstructural engineering in additive manufacturing. Addit. Manuf. 48, 102399 (2021).
Shui, X. et al. Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting. Mater. Sci. Eng. A Struct. Mater. 680, 239–248 (2017).
Kasperovich, G. & Hausmann, J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. J. Mater. Process. Technol. 220, 202–214 (2015).
Pegues, J. W. et al. Fatigue of additive manufactured Ti-6Al-4V, Part I: the effects of powder feedstock, manufacturing, and post-process conditions on the resulting microstructure and defects. Int. J. Fatigue 132, 105358 (2020).
Liu, R., Zhang, P., Zhang, Z. J., Wang, B. & Zhang, Z. F. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction. J. Mater. Sci. Technol. 70, 233–249 (2021).
Qu, Z. et al. Coupling effects of microstructure and defects on the fatigue properties of laser powder bed fusion Ti-6Al-4V. Addit. Manuf. 61, 103355 (2023).
Zhang, Z. J., Zhang, P., Li, L. L. & Zhang, Z. F. Fatigue cracking at twin boundaries: effects of crystallographic orientation and stacking fault energy. Acta Mater. 60, 3113–3127 (2012).
Zhang, Z. F. & Wang, Z. G. Grain boundary effects on cyclic deformation and fatigue damage. Prog. Mater Sci. 53, 1025–1099 (2008).
Li, P., Li, S. X., Wang, Z. G. & Zhang, Z. F. Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystals. Prog. Mater Sci. 56, 328–377 (2011).
Li, L. L., Zhang, Z. J., Zhang, P. & Zhang, Z. F. A review on the fatigue cracking of twin boundaries: crystallographic orientation and stacking fault energy. Prog. Mater Sci. 131, 101011 (2023).
Ding, Q. Q. et al. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 574, 223–227 (2019).
Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).
Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).
Liu, C. et al. Multi-dimensional study of the effect of early slip activity on fatigue crack initiation in a near-α titanium alloy. Acta Mater. 233, 117967 (2022).
Bantounas, I., Dye, D. & Lindley, T. C. The role of microtexture on the faceted fracture morphology in Ti–6Al–4 V subjected to high-cycle fatigue. Acta Mater. 58, 3908–3918 (2010).
Bridier, F., Villechaise, P. & Mendez, J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales. Acta Mater. 56, 3951–3962 (2008).
Neal, D. & Blenkinsop, P. Internal fatigue origins in α-β titanium alloys. Acta Metall. 24, 59–63 (1976).
Russell, W. & Simon, B. Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys (Springer, 2012).
Lütjering, G. Influence of processing on microstructure and mechanical properties of (α + β) titanium alloys. Mater. Sci. Eng. A Struct. Mater. 243, 32–45 (1998).
Lu, S. L. et al. Optimal tensile properties of laser powder bed fusion hereditary basket-weave microstructure in additive manufactured Ti6Al4V. Addit. Manuf. 59, 103092 (2022).
Wang, H. et al. Formation of a transition V-rich structure during the α‘ to α + β phase transformation process in additively manufactured Ti-6Al-4 V. Acta Mater. 235, 118104 (2022).
Kumar, P., Prakash, O. & Ramamurty, U. Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V. Acta Mater. 154, 246–260 (2018).
Xue, A. et al. Heat-affected coarsening of β grain in titanium alloy during laser directed energy deposition. Scr. Mater. 205, 114180 (2021).
Chen, J. et al. Deciphering the transformation pathway in laser powder-bed fusion additive manufacturing of Ti-6Al-4V alloy. Addit. Manuf. 58, 103041 (2022).
Zhang, D. et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature 576, 91–95 (2019).
Song, T. et al. Strong and ductile titanium–oxygen–iron alloys by additive manufacturing. Nature 618, 63–68 (2023).
Alegre, J. M., Díaz, A., García, R., Peral, L. B. & Cuesta, I. I. Effect of HIP post-processing at 850 °C/200 MPa in the fatigue behavior of Ti-6Al-4V alloy fabricated by Selective Laser Melting. Int. J. Fatigue 163, 107097 (2022).
Yu, H., Li, F., Wang, Z. & Zeng, X. Fatigue performances of selective laser melted Ti-6Al-4V alloy: influence of surface finishing, hot isostatic pressing and heat treatments. Int. J. Fatigue 120, 175–183 (2019).
Li, P. et al. Investigation of the mechanisms by which hot isostatic pressing improves the fatigue performance of powder bed fused Ti-6Al-4V. Int. J. Fatigue 120, 342–352 (2019).
Ahmed, T. & Rack, H. J. Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng. A Struct. Mater. 243, 206–211 (1998).
Tammas-Williams, S., Withers, P. J., Todd, I. & Prangnell, P. B. Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scr. Mater. 122, 72–76 (2016).
Semiatin, S. L., Soper, J. C. & Sukonnik, I. M. Short-time beta grain growth kinetics for a conventional titanium alloy. Acta Mater. 44, 1979–1986 (1996).
Fan, H., Wang, C., Tian, Y., Zhou, K. & Yang, S. Laser powder bed fusion (L-PBF) of Ti–6Al–4 V/Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4 V/γ-TiAl bimetals: processability, interface and mechanical properties. Mater. Sci. Eng. A Struct. Mater. 871, 144907 (2023).
Zhu, Y. M. et al. Ultrastrong nanotwinned titanium alloys through additive manufacturing. Nat. Mater. 21, 1258–1262 (2022).
Zarkades, A. & Larson, F. R. The Science, Technology and Application of Titanium (Pergamon, 1970).
Wu, G. Q., Shi, C. L., Sha, W., Sha, A. X. & Jiang, H. R. Effect of microstructure on the fatigue properties of Ti–6Al–4 V titanium alloys. Mater. Des. 46, 668–674 (2013).
Wang, S. et al. Role of porosity defects in metal 3D printing: formation mechanisms, impacts on properties and mitigation strategies. Mater. Today 59, 133–160 (2022).
Stinville, J. C. et al. On the origins of fatigue strength in crystalline metallic materials. Science 377, 1065–1071 (2022).
Li, L. L., Zhang, Z. J., Zhang, P., Wang, Z. G. & Zhang, Z. F. Controllable fatigue cracking mechanisms of copper bicrystals with a coherent twin boundary. Nat. Commun. 5, 3536 (2014).
Dan, C. et al. Achieving ultrahigh fatigue resistance in AlSi10Mg alloy by additive manufacturing. Nat. Mater. 22, 1182–1188 (2023).
Wang, Y. M. et al. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 17, 63–71 (2018).