• Althaus, L. G., Córsico, A. H., Isern, J. & García-Berro, E. Evolutionary and pulsational properties of white dwarf stars. Astron. Astrophys. Rev. 18, 471–566 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Saumon, D., Blouin, S. & Tremblay, P.-E. Current challenges in the physics of white dwarf stars. Phys. Rep. 988, 1–63 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • van Horn, H. M. Crystallization of white dwarfs. Astrophys. J. 151, 227 (1968).

    Article 
    ADS 

    Google Scholar
     

  • Tremblay, P.-E. et al. Core crystallization and pile-up in the cooling sequence of evolving white dwarfs. Nature 565, 202–205 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, S., Cummings, J. D. & Ménard, B. A cooling anomaly of high-mass white dwarfs. Astrophys. J. 886, 100 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Isern, J., Hernanz, M., Mochkovitch, R. & García-Berro, E. The role of the minor chemical species in the cooling of white dwarfs. Astron. Astrophys. 241, L29–L32 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • Segretain, L. Three-body crystallization diagrams and the cooling of white dwarfs. Astron. Astrophys. 310, 485–488 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Blouin, S., Daligault, J. & Saumon, D. 22Ne phase separation as a solution to the ultramassive white dwarf cooling anomaly. Astrophys. J. Lett. 911, L5 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hollands, M. A. et al. An ultra-massive white dwarf with a mixed hydrogen–carbon atmosphere as a likely merger remnant. Nat. Astron. 4, 663–669 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Shen, K. J., Blouin, S. & Breivik, K. The Q branch cooling anomaly can be explained by mergers of white dwarfs and subgiant stars. Astrophys. J. Lett. 955, L33 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Winget, D. E. et al. An independent method for determining the age of the universe. Astrophys. J. Lett. 315, L77 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fontaine, G., Brassard, P. & Bergeron, P. The potential of white dwarf cosmochronology. Publ. Astron. Soc. Pac. 113, 409–435 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Gaia Collaboration. Gaia Data Release 2. Observational Hertzsprung-Russell diagrams. Astron. Astrophys. 616, A10 (2018).

    Article 

    Google Scholar
     

  • Althaus, L. G., García-Berro, E., Isern, J., Córsico, A. H. & Miller Bertolami, M. M. New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution. Astron. Astrophys. 537, A33 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Blouin, S., Daligault, J., Saumon, D., Bédard, A. & Brassard, P. Toward precision cosmochronology. A new C/O phase diagram for white dwarfs. Astron. Astrophys. 640, L11 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bauer, E. B. Carbon-oxygen phase separation in Modules for Experiments in Stellar Astrophysics (MESA) white dwarf models. Astrophys. J. 950, 115 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Kilic, M. et al. The 100 pc white dwarf sample in the SDSS footprint. Astrophys. J. 898, 84 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bauer, E. B., Schwab, J., Bildsten, L. & Cheng, S. Multi-gigayear white dwarf cooling delays from clustering-enhanced gravitational sedimentation. Astrophys. J. 902, 93 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Camisassa, M. E. et al. Forever young white dwarfs: when stellar ageing stops. Astron. Astrophys. 649, L7 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fleury, L., Caiazzo, I. & Heyl, J. The cooling of massive white dwarfs from Gaia EDR3. Mon. Not. R. Astron. Soc. 511, 5984–5993 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Camisassa, M. E. et al. The evolution of ultra-massive white dwarfs. Astron. Astrophys. 625, A87 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Blouin, S. & Daligault, J. Phase separation in ultramassive white dwarfs. Astrophys. J. 919, 87 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bédard, A., Brassard, P., Bergeron, P. & Blouin, S. On the spectral evolution of hot white dwarf stars. II. Time-dependent simulations of element transport in evolving white dwarfs with STELUM. Astrophys. J. 927, 128 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Caplan, M. E., Horowitz, C. J. & Cumming, A. Neon cluster formation and phase separation during white dwarf cooling. Astrophys. J. Lett. 902, L44 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Deloye, C. J. & Bildsten, L. Gravitational settling of 22Ne in liquid white dwarf interiors: cooling and seismological effects. Astrophys. J. 580, 1077–1090 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • García-Berro, E., Althaus, L. G., Córsico, A. H. & Isern, J. Gravitational settling of 22Ne and white dwarf evolution. Astrophys. J. 677, 473–482 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bédard, A., Bergeron, P., Brassard, P. & Fontaine, G. On the spectral evolution of hot white dwarf stars. I. A detailed model atmosphere analysis of hot white dwarfs from SDSS DR12. Astrophys. J. 901, 93 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Romero, A. D., Kepler, S. O., Córsico, A. H., Althaus, L. G. & Fraga, L. Asteroseismological study of massive ZZ Ceti stars with fully evolutionary models. Astrophys. J. 779, 58 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Koester, D., Kepler, S. O. & Irwin, A. W. New white dwarf envelope models and diffusion. Application to DQ white dwarfs. Astron. Astrophys. 635, A103 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Althaus, L. G. et al. The formation of ultra-massive carbon-oxygen core white dwarfs and their evolutionary and pulsational properties. Astron. Astrophys. 646, A30 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zombeck, M. V. Handbook of Space Astronomy and Astrophysics 3rd edn (Cambridge Univ. Press, 2006).

  • García-Berro, E. et al. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes. Nature 465, 194–196 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kilic, M. et al. The ages of the thin disk, thick disk, and the halo from nearby white dwarfs. Astrophys. J. 837, 162 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Fantin, N. J. et al. The Canada–France Imaging Survey: reconstructing the Milky Way star formation history from its white dwarf population. Astrophys. J. 887, 148 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cukanovaite, E. et al. Local stellar formation history from the 40 pc white dwarf sample. Mon. Not. R. Astron. Soc. 522, 1643–1661 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Isern, J. The star formation history in the solar neighborhood as told by massive white dwarfs. Astrophys. J. Lett. 878, L11 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Salaris, M., Cassisi, S., Pietrinferni, A. & Hidalgo, S. The updated BASTI stellar evolution models and isochrones – III. White dwarfs. Mon. Not. R. Astron. Soc. 509, 5197–5208 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Althaus, L. G. et al. Structure and evolution of ultra-massive white dwarfs in general relativity. Astron. Astrophys. 668, A58 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Althaus, L. G. et al. Carbon–oxygen ultra-massive white dwarfs in general relativity. Mon. Not. R. Astron. Soc. 523, 4492–4503 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Williams, K. A., Montgomery, M. H., Winget, D. E., Falcon, R. E. & Bierwagen, M. Variability in hot carbon-dominated atmosphere (hot DQ) white dwarfs: rapid rotation? Astrophys. J. 817, 27 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Kilic, M. et al. The merger fraction of ultramassive white dwarfs. Mon. Not. R. Astron. Soc. 518, 2341–2353 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kippenhahn, R., Weigert, A. & Weiss, A. Stellar Structure and Evolution 2nd edn (Springer, 2012).

  • Iglesias, C. A. & Rogers, F. J. Updated OPAL opacities. Astrophys. J. 464, 943 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cassisi, S., Potekhin, A. Y., Pietrinferni, A., Catelan, M. & Salaris, M. Updated electron-conduction opacities: the impact on low-mass stellar models. Astrophys. J. 661, 1094–1104 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Blouin, S., Shaffer, N. R., Saumon, D. & Starrett, C. E. New conductive opacities for white dwarf envelopes. Astrophys. J. 899, 46 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Böhm-Vitense, E. Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen. Z. Astrophys. 46, 108 (1958).

    ADS 

    Google Scholar
     

  • Tassoul, M., Fontaine, G. & Winget, D. E. Evolutionary models for pulsation studies of white dwarfs. Astrophys. J. Suppl. Ser. 72, 335–386 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rohrmann, R. D., Althaus, L. G., García-Berro, E., Córsico, A. H. & Miller Bertolami, M. M. Outer boundary conditions for evolving cool white dwarfs. Astron. Astrophys. 546, A119 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Stanton, L. G. & Murillo, M. S. Ionic transport in high-energy-density matter. Phys. Rev. E 93, 043203 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Caplan, M. E., Bauer, E. B. & Freeman, I. F. Accurate diffusion coefficients for dense white dwarf plasma mixtures. Mon. Not. R. Astron. Soc. 513, L52–L56 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Camisassa, M. E. et al. The effect of 22Ne diffusion in the evolution and pulsational properties of white dwarfs with solar metallicity progenitors. Astrophys. J. 823, 158 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Althaus, L. G., García-Berro, E., Córsico, A. H., Miller Bertolami, M. M. & Romero, A. D. On the formation of hot DQ white dwarfs. Astrophys. J. Lett. 693, L23–L26 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Coutu, S. et al. Analysis of helium-rich white dwarfs polluted by heavy elements in the Gaia era. Astrophys. J. 885, 74 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Isern, J., García-Berro, E., Hernanz, M. & Chabrier, G. The energetics of crystallizing white dwarfs revisited again. Astrophys. J. 528, 397–400 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blouin, S. & Daligault, J. Direct evaluation of the phase diagrams of dense multicomponent plasmas by integration of the Clapeyron equations. Phys. Rev. E 103, 043204 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Salaris, M. et al. The cooling of CO white dwarfs: influence of the internal chemical distribution. Astrophys. J. 486, 413–419 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fuentes, J. R., Cumming, A., Castro-Tapia, M. & Anders, E. H. Heat transport and convective velocities in compositionally driven convection in neutron star and white dwarf interiors. Astrophys. J. 950, 73 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Montgomery, M. H. & Dunlap, B. H. Fluid mixing during phase separation in crystallizing white dwarfs. Astrophys. J. 961, 197 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Salaris, M. & Cassisi, S. Chemical element transport in stellar evolution models. R. Soc. Open Sci. 4, 170192 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughto, J. et al. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma. Phys. Rev. E 86, 066413 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cheng, S., Cummings, J. D., Ménard, B. & Toonen, S. Double white dwarf merger products among high-mass white dwarfs. Astrophys. J. 891, 160 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schwab, J. Evolutionary models for the remnant of the merger of two carbon-oxygen core white dwarfs. Astrophys. J. 906, 53 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hurley, J. R., Pols, O. R. & Tout, C. A. Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity. Mon. Not. R. Astron. Soc. 315, 543–569 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cummings, J. D., Kalirai, J. S., Tremblay, P. E., Ramirez-Ruiz, E. & Choi, J. The white dwarf initial–final mass relation for progenitor stars from 0.85 to 7.5 M. Astrophys. J. 866, 21 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Holberg, J. B. & Bergeron, P. Calibration of synthetic photometry using DA white dwarfs. Astron. J 132, 1221–1233 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tremblay, P. E., Bergeron, P. & Gianninas, A. An improved spectroscopic analysis of DA white dwarfs from the Sloan Digital Sky Survey Data Release 4. Astrophys. J. 730, 128 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Dufour, P., Bergeron, P. & Fontaine, G. Detailed spectroscopic and photometric analysis of DQ white dwarfs. Astrophys. J. 627, 404–417 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blouin, S., Dufour, P., Thibeault, C. & Allard, N. F. A new generation of cool white dwarf atmosphere models. IV. Revisiting the spectral evolution of cool white dwarfs. Astrophys. J. 878, 63 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gentile Fusillo, N. P. et al. A catalogue of white dwarfs in Gaia EDR3. Mon. Not. R. Astron. Soc. 508, 3877–3896 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Dufour, P. et al. in Proc. 20th European White Dwarf Workshop (eds Tremblay, P.-E., Gaensicke, B. & Marsh, T.) (Astronomical Society of the Pacific, 2017).

  • Bildsten, L. & Hall, D. M. Gravitational settling of 22Ne in liquid white dwarf interiors. Astrophys. J. Lett. 549, L219–L223 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Binney, J., Dehnen, W. & Bertelli, G. The age of the solar neighbourhood. Mon. Not. R. Astron. Soc. 318, 658–664 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Bland-Hawthorn, J. & Gerhard, O. The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mor, R., Robin, A. C., Figueras, F., Roca-Fàbrega, S. & Luri, X. Gaia DR2 reveals a star formation burst in the disc 2–3 Gyr ago. Astron. Astrophys. 624, L1 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cassisi, S., Potekhin, A. Y., Salaris, M. & Pietrinferni, A. Electron conduction opacities at the transition between moderate and strong degeneracy: uncertainties and impacts on stellar models. Astron. Astrophys. 654, A149 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fleury, L., Caiazzo, I. & Heyl, J. The origin of ultramassive white dwarfs: hints from Gaia EDR3. Mon. Not. R. Astron. Soc. 520, 364–374 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link


    administrator