• Jornet, J. M., Knightly, E. W. & Mittleman, D. M. Wireless communications sensing and security above 100 GHz. Nat. Commun. 14, 841 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taravati, S. & Eleftheriades, G. V. Full-duplex reflective beamsteering metasurface featuring magnetless nonreciprocal amplification. Nat. Commun. 12, 4414 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X., Lu, H. & Sengupta, K. Programmable terahertz chip-scale sensing interface with direct digital reconfiguration at sub-wavelength scales. Nat. Commun. 10, 2722 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nooshabadi, S., Khial, P. P., Fikes, A. & Hajimiri, A. A 28-GHz, multi-beam, decentralized relay array. IEEE J. Solid-State Circuits 58, 1212–1227 (2023).

    Article 

    Google Scholar
     

  • Venkatesh, S. et al. A high-speed programmable and scalable terahertz holographic metasurface based on tiled CMOS chips. Nat. Electron. 3, 785–793 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, C. et al. A fully integrated 320 GHz coherent imaging transceiver in 130 nm SiGe BiCMOS. IEEE J. Solid-State Circuits 51, 2596–2609 (2016).

    Article 

    Google Scholar
     

  • Li, Y. et al. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces. Sci. Rep. 3, 2546 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y. et al. Janus acoustic metascreen with nonreciprocal and reconfigurable phase modulations. Nat. Commun. 12, 7089 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duarte, V. C. et al. Modular coherent photonic-aided payload receiver for communications satellites. Nat. Commun. 10, 1984 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gültepe, G., Kanar, T., Zihir, S. & Rebeiz, G. M. A 1024-element Ku-band SATCOM phased-array transmitter with 45-dBW single-polarization EIRP. IEEE Trans. Microw. Theory Tech. 69, 4157–4168 (2021).

    Article 

    Google Scholar
     

  • Chu, T.-S. & Hashemi, H. A true time-delay-based bandpass multi-beam array at mm-waves supporting instantaneously wide bandwidths. In Proc. 2010 IEEE International Solid-State Circuits Conference (ISSCC) 38–39 (IEEE, 2010).

  • Roderick, J. D., Krishnaswamy, H., Newton, K. & Hashemi, H. A 4-bit ultra-wideband beamformer with 4ps true time delay resolution. In Proc. IEEE 2005 Custom Integrated Circuits Conference 805–808 (IEEE, 2005).

  • Chu, T.-S., Roderick, J. & Hashemi, H. An integrated ultra-wideband timed array receiver in 0.13 μm CMOS using a path-sharing true time delay architecture. IEEE J. Solid-State Circuits 42, 2834–2850 (2007).

    Article 

    Google Scholar
     

  • Gong, Y., Cho, M.-K. & Cressler, J. D. A bi-directional, X-band 6-Bit phase shifter for phased array antennas using an active DPDT switch. In Proc. 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 288–291 (IEEE, 2017).

  • Koh, K.-J. & Rebeiz, G. M. 0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays. IEEE J. Solid-State Circuits 42, 2535–2546 (2007).

    Article 

    Google Scholar
     

  • Li, T.-W. & Wang, H. A millimeter-wave fully integrated passive reflection-type phase shifter with transformer-based multi-resonance loads for 360° phase shifting. IEEE Trans. Circuits Syst. I Regul. Pap. 65, 1406–1419 (2018).

  • Chang, Y. & Floyd, B. A. A broadband reflection-type phase shifter achieving uniform phase and amplitude response across 27 to 31 GHz. In Proc. 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS) 1–4 (IEEE, 2019).

  • Dong, M. et al. High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nat. Photonics 16, 59–65 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Baltimas, D. & Rebeiz, G. M. A 25–50 GHz phase change material (PCM) 5-bit true time delay phase shifter in a production SiGe BiCMOS process. In Proc. 2021 IEEE MTT-S International Microwave Symposium (IMS) 435–437 (IEEE, 2021).

  • Barker, S. & Rebeiz, G. M. Distributed MEMS true-time delay phase shifters and wide-band switches. IEEE Trans. Microw. Theory Tech. 46, 1881–1890 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Jung, M. & Min, B.-W. A compact 3–30-GHz 68.5-ps CMOS true-time delay for wideband phased array systems. IEEE Trans. Microw. Theory Tech. 68, 5371–5380 (2020).

    Article 

    Google Scholar
     

  • Dinc, T. et al. Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity. Nat. Commun. 8, 795 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reiskarimian, N. & Krishnaswamy, H. Magnetic-free non-reciprocity based on staggered commutation. Nat. Commun. 7, 11217 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, T.-W., Park, J. S. & Wang, H. A 2–24-GHz 360° full-span differential vector modulator phase rotator with transformer-based poly-phase quadrature network. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28, 2623–2635 (2020).

    Article 

    Google Scholar
     

  • Li, S. & Rebeiz, G. M. A 140 GHz CMOS RFSOI transmit-receive phased-array wireless link with 11–12 Gbps and 16 and 64-QAM operation. In Proc. 2022 IEEE/MTT-S International Microwave Symposium (IMS 2022) 542–544 (IEEE, 2022).

  • Andricos C., Yueh S. H., Krimskiy V. A. & Rahmat-Samii Y. Compact Ku-band T/R module for high-resolution radar imaging of cold land processes. NASA Tech Briefs https://www.techbriefs.com/component/content/article/7619-npo-46428 (2010).

  • Nosrati, M., Shahsavari, S., Lee, S., Wang, H. & Tavassolian, A. A concurrent dual-beam phased-array Doppler radar using MIMO beamforming techniques for short-range vital-signs monitoring. IEEE Trans. Antennas Propag. 67, 2390–2404 (2019).

    Article 

    Google Scholar
     

  • Inac, O., Uzunkol, M. & Rebeiz, G. M. 45-nm CMOS SOI technology characterization for millimeter-wave applications. IEEE Trans. Microw. Theory Tech. 62, 1301–1311 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Atwater, H. A. Circuit design of the loaded-line phase shifter. IEEE Trans. Microw. Theory Tech. 33, 626–634 (1985).

    Article 

    Google Scholar
     

  • Woods, W. H., Valdes-Garcia, A., Ding, H. & Rascoe, J. CMOS millimeter wave phase shifter based on tunable transmission lines. In Proc. IEEE 2013 Custom Integrated Circuits Conference 1–4 (IEEE, 2013).

  • Elkholy, M., Shakib, S., Dunworth, J., Aparin, V. & Entesar, K. Low-loss highly linear integrated passive phase shifters for 5G front ends on bulk CMOS. IEEE Trans. Microw. Theory Tech. 66, 4563–4575 (2018).

    Article 

    Google Scholar
     

  • Anjos, E. V. P., Schreur, D. M. M.-P., Vandenbosch, G. A. E. & Geurts, M. A 14–50-GHz phase shifter with all-pass networks for 5G mobile applications. IEEE Trans. Microw. Theory Tech. 68, 762–774 (2020).

    Article 

    Google Scholar
     

  • Lange, J. Interdigitated stripline quadrature hybrid (correspondence). IEEE Trans. Microwave Theory Tech. 17, 1150–1151 (1969).

    Article 

    Google Scholar
     

  • Tapen, T. & Apsel, A. Ultrawideband frequency synthesis using the compact tunable transmission line (CTTL). IEEE Trans. Microw. Theory Tech. 70, 3374–3384 (2022).

    Article 

    Google Scholar
     

  • Wang, C.-W., Wu, H.-S. & Tzuang, C.-K. C. CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-band. IEEE Trans. Microw. Theory Tech. 59, 1778–1786 (2011).

    Article 

    Google Scholar
     

  • Balanis, C. A. Antenna Theory: Analysis and Design 4th edn (Wiley, 2016).

  • Mailloux, R. Phased Array Antenna Handbook 3rd edn (Artech, 2017).

  • Sounas, D. L., Soric, J. & Alù, A. Broadband passive isolators based on coupled nonlinear resonances. Nat. Electron. 1, 113–119 (2018).

    Article 

    Google Scholar
     

  • Cao, W. et al. Fully integrated parity–time-symmetric electronics. Nat. Nanotechnol. 17, 262–268 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, M. et al. Effect of wideband beam squint on codebook design in phased-array wireless systems. In Proc. IEEE Global Communications Conference (GLOBECOM) 1–6 (IEEE, 2016).

  • Cai, M., Laneman, J. N. & Hochwald, B. Beamforming codebook compensation for beam squint with channel capacity constraint. In Proc. 2017 IEEE International Symposium on Information Theory (ISIT) 76–80 (IEEE, 2017).

  • Ma, Q., Leenaerts, D. & Mahmoudi, R. A 12ps true-time-delay phase shifter with 6.6% delay variation at 20–40GHz. In Proc. 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 61–64 (IEEE, 2013).

  • Garakoui, S. K., Klumperink, E. A. M., Nauta, B. & van Vliet, F. E. Compact cascadable g m -C all-pass true time delay cell with reduced delay variation over frequency. IEEE J. Solid-State Circuits 50, 693–703 (2015).

    Article 

    Google Scholar
     



  • Source link


    administrator