• Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 11, 19–29 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, Z., Huang, H. & Lin, F. Sustainable electric vehicle batteries for a sustainable world: perspectives on battery cathodes, environment, supply chain, manufacturing, life cycle, and policy. Adv. Energy Mater. 12, 2200383 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yue, J., Yan, M., Yin, Y. X. & Guo, Y. G. Progress of the interface design in all-solid-state Li-S batteries. Adv. Funct. Mater. 28, 1707533 (2018).

    Article 

    Google Scholar
     

  • Guo, W. et al. Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 12, 3031 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, K. et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energy Environ. Sci. 10, 1568–1575 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z., Liu, Z. C., Dudney, N. J. & Liang, C. D. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano 7, 2829–2833 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, H. et al. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability. Sci. Adv. 8, eabn4372 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X., Luo, J. & Sun, X. Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. Chem. Soc. Rev. 49, 2140–2195 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J., Liu, S., Han, F., Yao, X. & Wang, C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 33, 2000751 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nagao, M., Hayashi, A. & Tatsumisago, M. High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries. J. Mater. Chem. 22, 10015–10020 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Z. et al. Bulk/interfacial synergetic approaches enable the stable anode for high energy density all solid-state lithium−sulfur batteries. ACS Energy Lett. 7, 2761–2770 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yao, X. et al. High performance all-solid-state lithium–sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes. Adv. Energy Mater. 7, 1602923 (2017).

    Article 

    Google Scholar
     

  • Saßnick, H. D. & Cocchi, C. Electronic structure of cesium-based photocathode materials from density functional theory: performance of PBE, SCAN, and HSE06 functionals. Electron. Struct. 3, 027001 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Hautier, G. et al. Phosphates as lithium-ion battery cathodes: an evaluation based on high-throughput ab initio calculations. Chem. Mater. 23, 3495–3508 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G., Niu, P., Yin, L. & Cheng, H.-M. α-Sulfur crystals as a visible-light-active photocatalyst. J. Am. Chem. Soc. 134, 9070–9073 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abass, A. K. & Ahmad, N. H. Indirect band gap investigation of orthorhombic single crystals of sulfur. J. Phys. Chem. Solids 47, 143–145 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, X. et al. Dynamically preferred state with strong electronic fluctuations from electrochemical synthesis of sodium manganite. Matter 5, 735–750 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Y. G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ye, L. & Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 593, 218–222 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, C. et al. A quasi-intercalation reaction for fast sulfur redox kinetics in solid-state lithium–sulfur batteries. Energy Environ. Sci. 15, 4289–4300 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Designer anion enabling solid-state lithium-sulfur batteries. Joule 3, 1689–1702 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y. et al. Se as eutectic accelerator in sulfurized polyacrylonitrile for high performance all-solid-state lithium-sulfur battery. Energy Storage Mater. 21, 287–296 (2019).

    Article 

    Google Scholar
     

  • Li, X. et al. High-performance Li-SeSx all-solid-state lithium batteries. Adv. Mater. 31, 1808100 (2019).

    Article 

    Google Scholar
     

  • Li, M. et al. Solid-state lithium–sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 30, 1910123 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Realizing high-capacity all-solid-state lithium-sulfur batteries using a low-density inorganic solid-state electrolyte. Nat. Commun. 14, 1895 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y., Meng, X., Wang, Z. & Qiu, J. A Li2S-based all-solid-state battery with high energy and superior safety. Sci. Adv. 8, eabl8390 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patel, M. U. et al. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components. ChemPhysChem 15, 894–904 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liang, X. et al. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 6, 5682 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nandasiri, M. I. et al. In-situ chemical imaging of solid-electrolyte interphase layer evolution in Li–S batteries. Chem. Mater. 29, 4728–4737 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C. et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl Acad. Sci. USA 114, 6197–6202 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Highly stable halide-electrolyte-based all-solid-state Li-Se batteries. Adv. Mater. 34, 2200856 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y., Zhao, C. Z., Huang, J. Q. & Zhang, Q. The timescale identification decoupling complicated kinetic processes in lithium batteries. Joule 6, 1172–1198 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Q., Lau, K. C. & Pandey, R. Thermodynamic and mechanical stability of crystalline phases of Li2S2. J. Phys. Chem. C 123, 4674–4681 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sofekun, G. O. et al. The rheology of liquid elemental sulfur across the λ-transition. J. Rheol. 62, 469–476 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wan, T., Saccoccio, H. M., Chen, C. & Ciucci, F. Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRT tools. Electrochim. Acta 184, 483–499 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Stoll, S. & Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 178, 42–55 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. & Hausermann, D. Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press. Res. 14, 235–248 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Qiu, X., Thompson, J. W. & Billinge, S. J. L. PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. J. Appl. Crystallogr. 37, 678–678 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, J. F. G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1169–1186 (1996).

    Article 

    Google Scholar
     

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article 
    CAS 

    Google Scholar
     



  • Source link


    administrator