Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).
Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).
Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).
Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).
Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).
Ivanov, E. N., Tobar, M. E. & Woode, R. A. Ultra-low-noise microwave oscillator with advanced phase noise suppression system. IEEE Microw. Guided W. 6, 312–314 (1996).
Kinget, P. in Analog Circuit Design (eds Sansen, W., Juijsign, J. & van de Plassche, R.) 353–381 (Springer, 1999).
Razavi, B. Design of millimeter-wave CMOS radios: a tutorial. IEEE Trans. Circuits Syst. 56, 4–16 (2009).
Rappaport, T. S., Murdock, J. N. & Gutierrez, F. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99, 1390–1436 (2011).
van Beek, J. T. M. & Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22, 013001 (2011).
Madjar, A. & Berceli, T. Microwave generation by optical techniques – a review. In Proc. Eur. Microw. Conf. (eds. Brazil, T. & Walker, J.) 1099–1102 (Horizon House Publications Ltd, 2006).
Maleki, L. The optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).
Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization – A Universal Concept in Nonlinear Sciences, Vol. 12 (Cambridge Univ. Press, 2001).
Jang, J. K. et al. Observation of Arnold tongues in coupled soliton Kerr frequency combs. Phys. Rev. Lett. 123, 153901 (2019).
Rodrigues, C. C. et al. Optomechanical synchronization across multi-octave frequency spans. Nat. Commun. 12, 5625 (2021).
Weng, W., Kaszubowska-Anandarajah, A., Liu, J., Anandarajah, P. M. & Kippenberg, T. J. Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Sci. Adv. 6, eaba2807 (2020).
Matsko, A. B. & Maleki, L. Noise conversion in Kerr comb RF photonic oscillators. J. Opt. Soc. Am. B 32, 232–240 (2015).
Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 3 (2017).
Bao, C. et al. Soliton repetition rate in a silicon-nitride microresonator. Opt. Lett. 42, 759–762 (2017).
Yang, Qi-Fan et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun. 12, 1442 (2021).
Drake, T. E., Stone, J. R., Briles, T. C. & Papp, S. B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photon. 14, 480–485 (2020).
Liu, F., Menyuk, C. R. & Chembo, Y. K. A stochastic approach to phase noise analysis for microwaves generated with Kerr optical frequency combs. Commun. Phys. 6, 117 (2023).
Coillet, Aurélien & Chembo, Y. On the robustness of phase locking in Kerr optical frequency combs. Opt. Lett. 39, 1529–1532 (2014).
Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photon. 12, 688–693 (2018).
Kim, BokYoung et al. Synchronization of nonsolitonic Kerr combs. Sci. Adv. 7, eabi4362 (2021).
Chembo, Y. K. & Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 033801 (2010).
Coen, Stéphane & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).
Godey, C., Balakireva, I. V., Coillet, Aurélien & Chembo, Y. K. Stability analysis of the spatiotemporal lugiato-lefever model for kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).
Kwon, D. et al. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci. Rep. 7, 1–9 (2017).
Tian, H. et al. Optical frequency comb noise spectra analysis using an asymmetric fiber delay line interferometer. Opt. Express 28, 9232–9243 (2020).
Gorodetksy, M. L., Schliesser, A., Anetsberger, G., Deleglise, S. & Kippenberg, T. J. Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt. Express 18, 23236–23246 (2010).
Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).
Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).
Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).
Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14, 483–485 (2002).
Zhao, Y., McNulty, K. J., Lipson, M. & Gaeta, A. L. Active tuning of the microresonator coupling condition with coupled rings. In Conference on Lasers and Electro-Optics (eds. Gan, Q., Saraceno, C., Da Ros, F. & Vasilyev, S.) SW4L.8 (Optica Publishing Group, 2023).
Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).
Weng, W. et al. Coherent terahertz-to-microwave link using electro-optic-modulated Turing rolls. Phys. Rev. A 104, 023511 (2021).
Guha, B., Cardenas, J. & Lipson, M. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21, 26557–26563 (2013).
Djordjevic, S. S. et al. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express 21, 13958–13968 (2013).
Rodrigues, J. R. et al. SiN-based waveguides with ultra-low thermo-optic effect. In Conference on Lasers and Electro-Optics (eds. Prasankumar, R., Tanabe, T., Brès, C. S. & Paiella, R.) SM4G.3 (Optica Publishing Group, 2022).
Raghunathan, V. et al. Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. Opt. Express 18, 17631–17639 (2010).
Kalubovilage, M., Endo, M. & Schibli, T. R. Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser. Opt. Express 28, 25400–25409 (2020).
Kalubovilage, M., Endo, M. & Schibli, T. R. X-Band photonic microwaves with phase noise below -180 dBc/Hz using a free-running monolithic comb. Opt. Express 30, 11266–11274 (2022).
Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).
Li, J. & Vahala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands. Optica 10, 33–34 (2023).
Jang, J. K. et al. Conversion efficiency of soliton Kerr combs. Opt. Lett. 46, 3657–3660 (2021).
Kondratiev, N., Lobanov, V., Dmitriev, N., Cordette, S. & Bilenko, I. Analysis of parameter combinations for optimal soliton microcomb generation efficiency in a simple single-cavity scheme. Phys. Rev. A 107, 063508 (2023).
Sun, S. et al. Integrated optical frequency division for microwave and mmwave generation. Nature https://doi.org/10.1038/s41586-024-07057-0 (2024).