Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).
Zhu, Q. et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 67, 240–245 (2022).
Morvan, A. et al. Phase transition in random circuit sampling. Preprint at https://arxiv.org/abs/2304.11119 (2023).
Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).
Preskill, J. Quantum computing and the entanglement frontier. Preprint at https://arxiv.org/abs/1203.5813 (2012).
Ghosh, S., Deshpande, A., Hangleiter, D., Gorshkov, A. V. & Fefferman, B. Complexity phase transitions generated by entanglement. Phys. Rev. Lett. 131, 030601 (2023).
Kechedzhi, K. et al. Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments. Future Gener. Comput. Syst. 153, 431–441 (2024).
Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Modern Phys. 94, 015004 (2022).
Hauru, M. et al. Simulation of quantum physics with tensor processing units: brute-force computation of ground states and time evolution. Preprint at https://arxiv.org/abs/2111.10466 (2021).
Neill, C. et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018).
Cross, A. W., Bishop, L. S., Sheldon, S., Nation, P. D. & Gambetta, J. M. Validating quantum computers using randomized model circuits. Phys. Rev. A 100, 032328 (2019).
Choi, J. et al. Preparing random states and benchmarking with many-body quantum chaos. Nature 613, 468–473 (2023).
Mark, D. K., Choi, J., Shaw, A. L., Endres, M. & Choi, S. Benchmarking quantum simulators using ergodic quantum dynamics. Phys. Rev. Lett. 131, 110601 (2023).
Proctor, T., Rudinger, K., Young, K., Nielsen, E. & Blume-Kohout, R. Measuring the capabilities of quantum computers. Nat. Phys. 18, 75–79 (2022).
Cirac, J. I. & Zoller, P. Goals and opportunities in quantum simulation. Nat. Phys. 8, 264–266 (2012).
Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).
Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).
Scholl, P. et al. Erasure conversion in a high-fidelity Rydberg quantum simulator. Nature 622, 273–278 (2023).
Shaw, A. L. et al. Dark-state enhanced loading of an optical tweezer array. Phys. Rev. Lett. 130, 193402 (2023).
Bridgeman, J. C. & Chubb, C. T. Hand-waving and interpretive dance: an introductory course on tensor networks. J. Phys. A Math. Theor. 50, 223001 (2017).
Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).
Zhou, Y., Stoudenmire, E. M. & Waintal, X. What limits the simulation of quantum computers? Phys. Rev. X 10, 041038 (2020).
Moses, S. A. et al. A race race track trapped-ion quantum processor. Phys. Rev. X 13, 041052 (2023).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).
Zhang, X., Kim, E., Mark, D. K., Choi, S. & Painter, O. A superconducting quantum simulator based on a photonic-bandgap metamaterial. Science 379, 278–283 (2023).
Haah, J., Hastings, M. B., Kothari, R. & Low, G. H. Quantum algorithm for simulating real time evolution of lattice Hamiltonians. SIAM J. Comput. 52, 6 (2021).
Tran, M. C. et al. Locality and digital quantum simulation of power-law interactions. Phys. Rev. X 9, 031006 (2019).
Kaufman, A. M. et al. Quantum thermalization through entanglement in an isolated many-body system. Science 353, 794–800 (2016).
Dalzell, A. M., Hunter-Jones, N., & Brandão, G. S. L. Random quantum circuits transform local noise into global white noise. Preprint at https://arxiv.org/abs/2111.14907 (2021).
Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M. & Suganthan, P. N. Ensemble deep learning: a review. Eng. Appl. Artificial Intell. 115, 105151 (2022).
Islam, R. et al. Measuring entanglement entropy in a quantum many-body system. Nature 528, 77–83 (2015).
Linke, N. M. et al. Measuring the Rényi entropy of a two-site Fermi-Hubbard model on a trapped ion quantum computer. Phys. Rev. A 98, 052334 (2018).
Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).
Plenio, M. B. Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2005).
O’Donnell, R. & Wright, J. Efficient quantum tomography. In Proc. Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16 899–912 (Association for Computing Machinery, 2016).
Haah, J., Harrow, A. W., Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE Trans. Inform. Theory 63, 5628 (2017).
Elben, A. et al. Mixed-state entanglement from local randomized measurements. Phys. Rev. Lett. 125, 200501 (2020).
Mooney, G. J., White, G. A. L., Hill, C. D. & Hollenberg, L. C. L. Whole-device entanglement in a 65-qubit superconducting quantum computer. Adv. Quant. Technol. 4, 2100061 (2021).
Lee, S., Chi, D. P., Oh, S. D. & Kim, J. Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Phys. Rev. A 68, 062304 (2003).
Bhosale, U. T., Tomsovic, S. & Lakshminarayan, A. Entanglement between two subsystems, the Wigner semicircle and extreme-value statistics. Phys. Rev. A 85, 062331 (2012).
Datta, A. Negativity of random pure states. Phys. Rev. A 81, 052312 (2010).
Vidal, G. Efficient simulation of one-dimensional quantum many-body systems. Phys. Rev. Lett. 93, 040502 (2004).
Ganahl, M. et al. Density matrix renormalization group with tensor processing units. PRX Quantum 4, 010317 (2023).
Häner, T. & Steiger, D. S. 0.5 Petabyte simulation of a 45-qubit quantum circuit. In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’17 (Association for Computing Machinery, 2017).
Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).
Elben, A. et al. Cross-platform verification of intermediate scale quantum devices. Phys. Rev. Lett. 124, 010504 (2020).
Zhu, D. et al. Cross-platform comparison of arbitrary quantum states. Nat. Commun. 13, 6620 (2022).
Carrasco, J., Elben, A., Kokail, C., Kraus, B. & Zoller, P. Theoretical and experimental perspectives of quantum verification. PRX Quantum 2, 010102 (2021).
Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).
Lee, Y. A. & Vidal, G. Entanglement negativity and topological order. Phys. Rev. A 88, 042318 (2013).
Lu, T.-C., Hsieh, T. H. & Grover, T. Detecting topological order at finite temperature using entanglement negativity. Phys. Rev. Lett. 125, 116801 (2020).
Sang, S. et al. Entanglement negativity at measurement-induced criticality. PRX Quantum 2, 030313 (2021).
Wu, Y., Kolkowitz, S., Puri, S. & Thompson, J. D. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 13, 4657 (2022).
Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).
Trivedi, R., Rubio, A. F. & Cirac, J. I. Quantum advantage and stability to errors in analogue quantum simulators. Preprint at https://arxiv.org/abs/2212.04924 (2022).
Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).