Lin, Q.-F. et al. A stable aluminosilicate zeolite with intersecting three-dimensional extra-large pores. Science 374, 1605–1608 (2021).
Li, J. et al. A 3D extra-large-pore zeolite enabled by 1D-to-3D topotactic condensation of a chain silicate. Science 379, 283–287 (2023).
Morris, R. E. Clicking zeolites together. Science 379, 236–237 (2023).
Inagaki, S., Yokoi, T., Kubota, Y. & Tatsumi, T. Unique adsorption properties of organic–inorganic hybrid zeolite IEZ-1 with dimethylsilylene moieties. Chem. Commun. 48, 5188–5190 (2007).
Fan, W., Wu, P., Namba, S. & Tatsumi, T. A titanosilicate that is structurally analogous to an MWW-type lamellar precursor. Angew Chem. Int. Ed. 43, 236–240 (2004).
Smet, S. et al. Alternating copolymer of double four ring silicate and dimethyl silicone monomer–PSS-1. Chem. Eur. J. 23, 11286–11293 (2017).
Xu, L. & Sun, J. Recent advances in the synthesis and application of two-dimensional zeolites. Adv. Energy Mater. 6, 1600441 (2016).
Shamzhy, M., Gil, B., Opanasenko, M., Roth, W. J. & Čejka, J. MWW and MFI frameworks as model layered zeolites: structures, transformations, properties, and activity. ACS Catal. 11, 2366–2396 (2021).
Dawson, D. M., Moran, R. F. & Ashbrook, S. E. An NMR crystallographic investigation of the relationships between the crystal structure and 29Si isotropic chemical shift in silica zeolites. J. Phys. Chem. C Nanomater. Interfaces 121, 15198–15210 (2017).
Baerlocher, C. & McCusker, L. B. Database of Zeolite Structures (Structure Commission of the International Zeolite Association, accessed 23 March 2023); http://www.iza-structure.org/databases/.
Zheng, N., Bu, X., Wang, B. & Feng, P. Microporous and photoluminescent chalcogenide zeolite analogs. Science 298, 2366–2369 (2002).
Zicovich, C. M., Gándara, F., Monge, A. & Camblor, M. A. In situ transformation of TON silica zeolite into the less dense ITW: Structure-direction overcoming framework instability in the synthesis of SiO2 zeolites. J. Am. Chem. Soc. 132, 3461–3471 (2010).
Pophale, R., Cheeseman, P. A. & Deem, M. W. A database of new zeolite-like materials. Phys. Chem. Chem. Phys. 13, 12407–12412 (2011).
Eliášová, P. et al. The ADOR mechanism for the synthesis of new zeolites. Chem. Soc. Rev. 44, 7177–7206 (2015).
Mazur, M. et al. Synthesis of ‘unfeasible’ zeolites. Nat. Chem. 8, 58–62 (2016).
Li, J., Lin, C., Ma, T. & Sun, J. Atomic-resolution structures from polycrystalline covalent organic frameworks with enhanced cryo-cRED. Nat. Commun. 13, 4016 (2022).
Sheldrick, G. M. Phase annealing in SHELX-90: direct methods for larger structures. Acta Cryst. A46, 467–473 (1990).
Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).
Petricek, V., Dusek, M. & Palatinus, L. Crystallographic computing system JANA2006: general features. Z. Kristallogr. 229, 345–352 (2014).
Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density Along Dislocations. PhD thesis, Arizona State Univ. (2002).
Deem, M. W., Pophale, R., Cheeseman, P. A. & Earl, D. J. Computational discovery of new zeolite-like materials. J. Phys. Chem. C 113, 21353–21360 (2009).