• Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662–662 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Son, Y.-W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Barone, V., Hod, O. & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 6, 2748–2754 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Betti, A., Fiori, G. & Iannaccone, G. Drift velocity peak and negative differential mobility in high field transport in graphene nanoribbons explained by numerical simulations. Appl. Phys. Lett. 99, 242108 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Geng, Z. et al. Graphene nanoribbons for electronic devices. Ann. Phys. 529, 1700033 (2017).

    Article 

    Google Scholar
     

  • Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Llinas, J. P. et al. Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H. S. et al. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater. 20, 202–207 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 100, 206803 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chen, C. et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nat. Electron. 4, 653–663 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Photoluminescent semiconducting graphene nanoribbons via longitudinally unzipping single-walled carbon nanotubes. ACS Appl. Mater. Interfaces 13, 52892–52900 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. et al. Oriented graphene nanoribbons embedded in hexagonal boron nitride trenches. Nat. Commun. 8, 14703 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, G. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 109, 053101 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wang, X. et al. Graphene nanoribbons with smooth edges behave as quantum wires. Nat. Nanotechnol. 6, 563–567 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, M.-W. et al. Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons. Phys. Rev. B 84, 125411 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Lu, X. et al. Graphene nanoribbons epitaxy on boron nitride. Appl. Phys. Lett. 108, 113103 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia, A. G. F. et al. Effective cleaning of hexagonal boron nitride for graphene devices. Nano Lett. 12, 4449–4454 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pham, P. V. Cleaning of graphene surfaces by low-pressure air plasma. R. Soc. Open Sci. 5, 172395 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y., Herlinger, P., Taniguchi, T., Watanabe, K. & Smet, J. H. Reliable postprocessing improvement of van der Waals heterostructures. ACS Nano 13, 14182–14190 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3, 491–495 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lyu, B. et al. Catalytic growth of ultralong graphene nanoribbons on insulating substrates. Adv. Mater. 34, 2200956 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mandelli, D., Ouyang, W., Urbakh, M. & Hod, O. The princess and the nanoscale pea: long-range penetration of surface distortions into layered materials stacks. ACS Nano 13, 7603–7609 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tapasztó, L., Dobrik, G., Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397–401 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Way, A. J. et al. Graphene nanoribbons initiated from molecularly derived seeds. Nat. Commun. 13, 2992 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno, C. et al. On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons. Chem. Commun. 54, 9402–9405 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol. 5, 321–325 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sprinkle, M. et al. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5, 727–731 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Penumatcha, A. V., Salazar, R. B. & Appenzeller, J. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model. Nat. Commun. 6, 8948 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Heinze, S. et al. Carbon nanotubes as Schottky barrier transistors. Phys. Rev. Lett. 89, 106801 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron. 5, 416–423 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Q., Fang, T., Xing, H., Seabaugh, A. & Jena, D. Graphene nanoribbon tunnel transistors. IEEE Electron Device Lett. 29, 1344–1346 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, P., Chauhan, J. & Guo, J. Computational study of tunneling transistor based on graphene nanoribbon. Nano Lett. 9, 684–688 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahman, A., Jing, G., Datta, S. & Lundstrom, M. S. Theory of ballistic nanotransistors. IEEE Trans. Electron Devices 50, 1853–1864 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Javey, A., Guo, J., Wang, Q., Lundstrom, M. & Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 424, 654–657 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Javey, A. et al. High-field quasiballistic transport in short carbon nanotubes. Phys. Rev. Lett. 92, 106804 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jiang, J., Xu, L., Qiu, C. & Peng, L.-M. Ballistic two-dimensional InSe transistors. Nature 616, 470–475 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Laroche, D., Gervais, G., Lilly, M. P. & Reno, J. L. 1D-1D Coulomb drag signature of a Luttinger liquid. Science 343, 631–634 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, S. et al. Tunneling spectroscopy in carbon nanotube-hexagonal boron nitride-carbon nanotube heterojunctions. Nano Lett. 20, 6712–6718 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Physical Review B 48, 13115–13118 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Wu, P. et al. Carbon dimers as the dominant feeding species in epitaxial growth and morphological phase transition of graphene on different Cu substrates. Phys. Rev. Lett. 114, 216102 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Ouyang, W., Mandelli, D., Urbakh, M. & Hod, O. Nanoserpents: graphene nanoribbon motion on two-dimensional hexagonal materials. Nano Lett. 18, 6009–6016 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brenner, D. W. et al. A second-generation reactive empirical bondorder (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kınacı, A., Haskins, J. B., Sevik, C. & Çağın, T. Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Leven, I., Azuri, I., Kronik, L. & Hod, O. Inter-layer potential for hexagonal boron nitride. J. Chem. Phys. 140, 104106 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Leven, I., Maaravi, T., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for graphene/h-BN heterostructures. J. Chem. Theory Comput. 12, 2896–2905 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maaravi, T., Leven, I., Azuri, I., Kronik, L. & Hod, O. Interlayer potential for homogeneous graphene and hexagonal boron nitride systems: reparametrization for many-body dispersion effects. J. Phys. Chem. C 121, 22826–22835 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Ouyang, W. et al. Mechanical and tribological properties of layered materials under high pressure: assessing the importance of many-body dispersion effects. J. Chem. Theory Comput. 16, 666–676 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bitzek, E., Koskinen, P., Gahler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shylau, A. A., Kłos, J. W. & Zozoulenko, I. V. Capacitance of graphene nanoribbons. Phys. Rev. B 80, 205402 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 293–373 (Wiley, 2006).



  • Source link