• Yu, P., Cheuk, L. W., Kozyryev, I. & Doyle, J. M. A scalable quantum computing platform using symmetric-top molecules. New J. Phys. 21, 093049 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wei, Q., Kais, S., Friedrich, B. & Herschbach, D. Entanglement of polar symmetric top molecules as candidate qubits. J. Chem. Phys. 135, 154102 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tesch, C. M. & de Vivie-Riedle, R. Quantum computation with vibrationally excited molecules. Phys. Rev. Lett. 89, 157901 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wall, M. L., Maeda, K. & Carr, L. D. Simulating quantum magnets with symmetric top molecules. Ann. Phys. (Berlin) 525, 845–865 (2013).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wall, M., Hazzard, K. & Rey, A. M. in From Atomic To Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities (eds Malinovskaya, S. & Novikova, I.) 3–37 (World Scientific, 2015).

  • Wall, M., Maeda, K. & Carr, L. D. Realizing unconventional quantum magnetism with symmetric top molecules. New J. Phys. 17, 025001 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Heazlewood, B. R. & Softley, T. P. Towards chemistry at absolute zero. Nat. Rev. Chem. 5, 125–140 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kozyryev, I., Lasner, Z. & Doyle, J. M. Enhanced sensitivity to ultralight bosonic dark matter in the spectra of the linear radical SrOH. Phys. Rev. A 103, 043313 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hutzler, N. R. Polyatomic molecules as quantum sensors for fundamental physics. Quantum Sci. Technol. 5, 044011 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

  • Gorshkov, A. V. et al. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 033619 (2011).

    Article 
    ADS 

    Google Scholar
     

  • DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yelin, S., Kirby, K. & Côté, R. Schemes for robust quantum computation with polar molecules. Phys. Rev. A 74, 050301 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Ni, K.-K., Rosenband, T. & Grimes, D. D. Dipolar exchange quantum logic gate with polar molecules. Chem. Sci. 9, 6830–6838 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sawant, R. et al. Ultracold polar molecules as qudits. New J. Phys. 22, 013027 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Albert, V. V., Covey, J. P. & Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).

    CAS 

    Google Scholar
     

  • Cheuk, L. W. et al. Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. Lett. 125, 043401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kondov, S. S. et al. Molecular lattice clock with long vibrational coherence. Nat. Phys. 15, 1118–1122 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Norrgard, E. B. et al. Nuclear-spin dependent parity violation in optically trapped polyatomic molecules. Commun. Phys. 2, 1–6 (2019).

    Article 

    Google Scholar
     

  • Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Barredo, D., Lienhard, V., de Léséleuc, S., Lahaye, T. & Browaeys, A. Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561, 79–82 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Levine, H. et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett. 123, 170503 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. Nature 622, 268–272 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholl, P. et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Norcia, M. A. et al. Seconds-scale coherence on an optical clock transition in a tweezer array. Science 366, 93–97 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madjarov, I. S. et al. An atomic-array optical clock with single-atom readout. Phys. Rev. X 9, 041052 (2019).

    CAS 

    Google Scholar
     

  • Young, A. W. et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock. Nature 588, 408–413 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reynolds, L. A. et al. Direct measurements of collisional dynamics in cold atom triads. Phys. Rev. Lett. 124, 073401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. T. et al. An optical tweezer array of ground-state polar molecules. Quantum Sci. Technol. 7, 035006 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Ruttley, D. K. et al. Formation of ultracold molecules by merging optical tweezers. Phys. Rev. Lett. 130, 223401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science 382, 1143–1147 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Bao, Y. et al. Raman sideband cooling of molecules in an optical tweezer array to the 3D motional ground state. Preprint at https://arxiv.org/abs/2309.08706 (2023).

  • Lu, Y., Li, S. J., Holland, C. M. & Cheuk, L. W. Raman sideband cooling of molecules in an optical tweezer array. Nat. Phys. 20, 389–394 (2024).

  • Augenbraun, B. L. et al. in Advances in Atomic, Molecular, and Optical Physics Vol. 72 (eds DiMauro, L. F., Perrin, H. & Yelin, S. F.) 89–182 (Academic, 2023).

  • Anderegg, L. et al. Quantum control of trapped polyatomic molecules for eEDM searches. Science 382, 665–668 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, Y., Zhang, C., Jadbabaie, A. & Hutzler, N. R. Engineering field-insensitive molecular clock transitions for symmetry violation searches. Phys. Rev. Lett. 131, 183003 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prehn, A., Ibrügger, M., Glöckner, R., Rempe, G. & Zeppenfeld, M. Optoelectrical cooling of polar molecules to submillikelvin temperatures. Phys. Rev. Lett. 116, 063005 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Magnetic trapping of cold methyl radicals. Phys. Rev. Lett. 118, 093201 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hallas, C. et al. Optical trapping of a polyatomic molecule in an -type parity doublet state. Phys. Rev. Lett. 130, 153202 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlosser, N., Reymond, G., Protsenko, I. & Grangier, P. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature 411, 1024–1027 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheuk, L. W. et al. Λ-enhanced imaging of molecules in an optical trap. Phys. Rev. Lett. 121, 083201 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pereira, R. & Levy, D. H. Observation and spectroscopy of high-lying states of the CaOH radical: Evidence for a bent, covalent state. J. Chem. Phys. 105, 9733–9739 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vilas, N. B. et al. Blackbody thermalization and vibrational lifetimes of trapped polyatomic molecules. Phys. Rev. A 107, 062802 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Holland, C. M., Lu, Y. & Cheuk, L. W. Bichromatic imaging of single molecules in an optical tweezer array. Phys. Rev. Lett. 131, 053202 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tuchendler, C., Lance, A. M., Browaeys, A., Sortais, Y. R. P. & Grangier, P. Energy distribution and cooling of a single atom in an optical tweezer. Phys. Rev. A 78, 033425 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Augustovičová, L. D. & Bohn, J. L. Ultracold collisions of polyatomic molecules: CaOH. New J. Phys. 21, 103022 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Augenbraun, B. L., Doyle, J. M., Zelevinsky, T. & Kozyryev, I. Molecular asymmetry and optical cycling: Laser cooling asymmetric top molecules. Phys. Rev. X 10, 031022 (2020).

    CAS 

    Google Scholar
     

  • Anderegg, L. Ultracold Molecules in Optical Arrays: From Laser Cooling to Molecular Collisions. PhD thesis, Harvard Univ. (2019).

  • Truppe, S. et al. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. New J. Phys. 19, 022001 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. Accurate prediction and measurement of vibronic branching ratios for laser cooling linear polyatomic molecules. J. Chem. Phys. 155, 091101 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Y. et al. Coherent optical creation of a single molecule. Phys. Rev. X 11, 031061 (2021).

    CAS 

    Google Scholar
     



  • Source link