Abu-Omar, M. M. et al. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 14, 262–292 (2021).
Samec, J. S. Holistic approach for converting biomass to fuels. Chem 4, 1199–1200 (2018).
Shuai, L. & Saha, B. Towards high-yield lignin monomer production. Green Chem. 19, 3752–3758 (2017).
Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).
Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).
Questell-Santiago, Y. M., Galkin, M. V., Barta, K. & Luterbacher, J. S. Stabilization strategies in biomass depolymerization using chemical functionalization. Nat. Rev. Chem. 4, 311–330 (2020).
Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016).
Li, J. & Gellerstedt, G. Improved lignin properties and reactivity by modifications in the autohydrolysis process of aspen wood. Ind. Crops Prod. 27, 175–181 (2008).
Ono, H.-K. & Sudo, K. in Lignin Properties and Materials Vol. 397 (eds Glasser, W. G. & Sarkanen, S.) 334–345 (ACS, 1989).
Liao, Y. et al. A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 367, 1385–1390 (2020).
Cao, Z., Dierks, M., Clough, M. T., Daltro de Castro, I. B. & Rinaldi, R. A convergent approach for a deep converting lignin-first biorefinery rendering high-energy-density drop-in fuels. Joule 2, 1118–1133 (2018).
Subbotina, E. et al. Oxidative cleavage of C–C bonds in lignin. Nat. Chem. 13, 1118–1125 (2021).
Zhang, C. et al. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization. Chem. Rev. 123, 4510–4601 (2023).
Zijlstra, D. S. et al. Mild organosolv lignin extraction with alcohols: the importance of benzylic alkoxylation. ACS Sustain. Chem. Eng. 8, 5119–5131 (2020).
Lan, W. & Luterbacher, J. S. A road to profitability from lignin via the production of bioactive molecules. ACS Cent. Sci. 5, 1642–1644 (2019).
Koelewijn, S. F. et al. Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chem. 20, 1050–1058 (2018).
Wu, X., Galkin, M. V. & Barta, K. A well-defined diamine from lignin depolymerization mixtures for constructing bio-based polybenzoxazines. Chem Catal. 1, 1360–1362 (2021).
Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).
Koelewijn, S.-F. et al. Regioselective synthesis, isomerisation, in vitro oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers. Green Chem. 21, 6622–6633 (2019).
Trullemans, L. et al. Renewable and safer bisphenol A substitutes enabled by selective zeolite alkylation. Nat. Sustain. 6, 1693–1704 (2023).
Sturgeon, M. R. et al. A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain. Chem. Eng. 2, 472–485 (2013).
Sheng, Y. et al. Using nucleophilic naphthol derivatives to suppress biomass lignin repolymerization in fermentable sugar production. Chem. Eng. J. 420, 130258 (2021). 1-9.
Funaoka, M. & Abe, I. Phenyl nucleus-exchange method for the degradation of lignin. Wood Sci. Technol. 21, 261–279 (1987).
Gong, Z. et al. Phenol-assisted depolymerisation of condensed lignins to mono-/poly-phenols and bisphenols. Chem. Eng. J. 455, 140628 (2023). 1-7.
Yokoyama, T. Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 6: a review. J. Wood Chem. Technol. 35, 27–42 (2014).
Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. 55, 8164–8215 (2016).
Li, Y. et al. An “ideal lignin” facilitates full biomass utilization. Sci. Adv. 4, eaau2968 (2018). 1-10.
Adler, A. et al. Lignin-first biorefining of Nordic poplar to produce cellulose fibers could displace cotton production on agricultural lands. Joule 6, 1845–1858 (2022).
Luterbacher, J. S., Martin Alonso, D. & Dumesic, J. A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem. 16, 4816–4838 (2014).
Meng, X. et al. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 14, 2627–2647 (2019).
Yan, J. et al. Selective valorization of lignin to phenol by direct transformation of Csp2–Csp3 and C–O bonds. Sci. Adv. 6, eabd1951 (2020). 1-10.
Liang, J. et al. Studying paraben-induced estrogen receptor- and steroid hormone-related endocrine disruption effects via multi-level approaches. Sci. Total Environ. 869, 161793 (2023).
Sluiter, A. et al. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP) Technical Report NREL/TP-510-42618 (NREL, 2008).
Yang, X. et al. Synthetic phenolic antioxidants cause perturbation in steroidogenesis in vitro and in vivo. Environ. Sci. Technol. 52, 850–858 (2018).
Koelewijn, S. F. et al. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chem. 19, 2561–2570 (2017).
Peng, Y., Nicastro, K. H., Epps, T. H. & Wu, C. Methoxy groups reduced the estrogenic activity of lignin-derivable replacements relative to bisphenol A and bisphenol F as studied through two in vitro assays. Food Chem. 338, 127656 (2021). 1-9.
Peng, Y., Nicastro, K. H., Epps, T. H. & Wu, C. Evaluation of estrogenic activity of novel bisphenol A alternatives, four bioinspired bisguaiacol F specimens, by in vitro assays. J. Agri. Food Chem. 66, 11775–11783 (2018).