• Abu-Omar, M. M. et al. Guidelines for performing lignin-first biorefining. Energy Environ. Sci. 14, 262–292 (2021).

    Article 

    Google Scholar
     

  • Samec, J. S. Holistic approach for converting biomass to fuels. Chem 4, 1199–1200 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shuai, L. & Saha, B. Towards high-yield lignin monomer production. Green Chem. 19, 3752–3758 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Renders, T., Van den Bosch, S., Koelewijn, S. F., Schutyser, W. & Sels, B. F. Lignin-first biomass fractionation: the advent of active stabilisation strategies. Energy Environ. Sci. 10, 1551–1557 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Questell-Santiago, Y. M., Galkin, M. V., Barta, K. & Luterbacher, J. S. Stabilization strategies in biomass depolymerization using chemical functionalization. Nat. Rev. Chem. 4, 311–330 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shuai, L. et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329–333 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. & Gellerstedt, G. Improved lignin properties and reactivity by modifications in the autohydrolysis process of aspen wood. Ind. Crops Prod. 27, 175–181 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Ono, H.-K. & Sudo, K. in Lignin Properties and Materials Vol. 397 (eds Glasser, W. G. & Sarkanen, S.) 334–345 (ACS, 1989).

  • Liao, Y. et al. A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 367, 1385–1390 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Z., Dierks, M., Clough, M. T., Daltro de Castro, I. B. & Rinaldi, R. A convergent approach for a deep converting lignin-first biorefinery rendering high-energy-density drop-in fuels. Joule 2, 1118–1133 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Subbotina, E. et al. Oxidative cleavage of C–C bonds in lignin. Nat. Chem. 13, 1118–1125 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization. Chem. Rev. 123, 4510–4601 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zijlstra, D. S. et al. Mild organosolv lignin extraction with alcohols: the importance of benzylic alkoxylation. ACS Sustain. Chem. Eng. 8, 5119–5131 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lan, W. & Luterbacher, J. S. A road to profitability from lignin via the production of bioactive molecules. ACS Cent. Sci. 5, 1642–1644 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koelewijn, S. F. et al. Promising bulk production of a potentially benign bisphenol A replacement from a hardwood lignin platform. Green Chem. 20, 1050–1058 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wu, X., Galkin, M. V. & Barta, K. A well-defined diamine from lignin depolymerization mixtures for constructing bio-based polybenzoxazines. Chem Catal. 1, 1360–1362 (2021).


    Google Scholar
     

  • Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koelewijn, S.-F. et al. Regioselective synthesis, isomerisation, in vitro oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers. Green Chem. 21, 6622–6633 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Trullemans, L. et al. Renewable and safer bisphenol A substitutes enabled by selective zeolite alkylation. Nat. Sustain. 6, 1693–1704 (2023).

    Article 

    Google Scholar
     

  • Sturgeon, M. R. et al. A mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: implications for lignin depolymerization in acidic environments. ACS Sustain. Chem. Eng. 2, 472–485 (2013).

    Article 

    Google Scholar
     

  • Sheng, Y. et al. Using nucleophilic naphthol derivatives to suppress biomass lignin repolymerization in fermentable sugar production. Chem. Eng. J. 420, 130258 (2021). 1-9.

    Article 
    CAS 

    Google Scholar
     

  • Funaoka, M. & Abe, I. Phenyl nucleus-exchange method for the degradation of lignin. Wood Sci. Technol. 21, 261–279 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Gong, Z. et al. Phenol-assisted depolymerisation of condensed lignins to mono-/poly-phenols and bisphenols. Chem. Eng. J. 455, 140628 (2023). 1-7.

    Article 
    CAS 

    Google Scholar
     

  • Yokoyama, T. Revisiting the mechanism of β-O-4 bond cleavage during acidolysis of lignin. Part 6: a review. J. Wood Chem. Technol. 35, 27–42 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rinaldi, R. et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew. Chem. 55, 8164–8215 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. An “ideal lignin” facilitates full biomass utilization. Sci. Adv. 4, eaau2968 (2018). 1-10.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adler, A. et al. Lignin-first biorefining of Nordic poplar to produce cellulose fibers could displace cotton production on agricultural lands. Joule 6, 1845–1858 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Luterbacher, J. S., Martin Alonso, D. & Dumesic, J. A. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem. 16, 4816–4838 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Meng, X. et al. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 14, 2627–2647 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, J. et al. Selective valorization of lignin to phenol by direct transformation of Csp2–Csp3 and C–O bonds. Sci. Adv. 6, eabd1951 (2020). 1-10.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liang, J. et al. Studying paraben-induced estrogen receptor- and steroid hormone-related endocrine disruption effects via multi-level approaches. Sci. Total Environ. 869, 161793 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sluiter, A. et al. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP) Technical Report NREL/TP-510-42618 (NREL, 2008).

  • Yang, X. et al. Synthetic phenolic antioxidants cause perturbation in steroidogenesis in vitro and in vivo. Environ. Sci. Technol. 52, 850–858 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Koelewijn, S. F. et al. Sustainable bisphenols from renewable softwood lignin feedstock for polycarbonates and cyanate ester resins. Green Chem. 19, 2561–2570 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Peng, Y., Nicastro, K. H., Epps, T. H. & Wu, C. Methoxy groups reduced the estrogenic activity of lignin-derivable replacements relative to bisphenol A and bisphenol F as studied through two in vitro assays. Food Chem. 338, 127656 (2021). 1-9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Peng, Y., Nicastro, K. H., Epps, T. H. & Wu, C. Evaluation of estrogenic activity of novel bisphenol A alternatives, four bioinspired bisguaiacol F specimens, by in vitro assays. J. Agri. Food Chem. 66, 11775–11783 (2018).

    Article 
    CAS 

    Google Scholar
     



  • Source link


    administrator