• DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article 

    Google Scholar
     

  • Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, M. K. et al. Exploring large-scale entanglement in quantum simulation. Nature 624, 539–544 (2023).

  • Li, B.-W. et al. Probing critical behavior of long-range transverse-field ising model through quantum Kibble-Zurek mechanism. PRX Quantum 4, 010302 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Britton, J. W. et al. Engineered two-dimensional ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cerezo, M. et al. Variational quantum algorithms. Nature Rev. Phys. 3, 625–644 (2021).

    Article 

    Google Scholar
     

  • Szymanski, B. et al. Large two dimensional Coulomb crystals in a radio frequency surface ion trap. Appl. Phys. Lett. 100, 171110 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Xie, Y. et al. An open-endcap blade trap for radial-2d ion crystals. Quantum Sci. Technol. 6, 044009 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kato, A. et al. Two-tone doppler cooling of radial two-dimensional crystals in a radio-frequency ion trap. Phys. Rev. A 105, 023101 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kiesenhofer, D. et al. Controlling two-dimensional coulomb crystals of more than 100 ions in a monolithic radio-frequency trap. PRX Quantum 4, 020317 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Qiao, M. et al. Tunable quantum simulation of spin models with a two-dimensional ion crystal. Nat. Phys. 20, 623–630 (2024).

  • Sterling, R. C. et al. Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip. Nature Commun. 5, 3637 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kiefer, P. et al. Floquet-engineered vibrational dynamics in a two-dimensional array of trapped ions. Phys. Rev. Lett. 123, 213605 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Holz, P. C. et al. 2D linear trap array for quantum information processing. Adv. Quantum Technol. 3, 2000031 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Amini, J. M. et al. Toward scalable ion traps for quantum information processing. New J. Phys. 12, 033031 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Shu, G. et al. Heating rates and ion-motion control in a \({\mathsf{Y}}\)-junction surface-electrode trap. Phys. Rev. A 89, 062308 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Burton, W. C. et al. Transport of multispecies ion crystals through a junction in a radio-frequency paul trap. Phys. Rev. Lett. 130, 173202 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, B.-W. et al. Observation of non-markovian spin dynamics in a Jaynes-Cummings-Hubbard model using a trapped-ion quantum simulator. Phys. Rev. Lett. 129, 140501 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Kim, K. et al. Entanglement and tunable spin–spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baldwin, C. H. et al. High-fidelity light-shift gate for clock-state qubits. Phys. Rev. A 103, 012603 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roman, C., Ransford, A., Ip, M. & Campbell, W. C. Coherent control for qubit state readout. New J. Phys. 22, 073038 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Edmunds, C. L. et al. Scalable hyperfine qubit state detection via electron shelving in the 2D5/2 and 2F7/2 manifolds in 171yb+. Phys. Rev. A 104, 012606 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, H.-X. et al. Realizing coherently convertible dual-type qubits with the same ion species. Nature Phys. 18, 1058–1061 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Smith, A., Kim, M. S., Pollmann, F. & Knolle, J. Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inform. 5, 106 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Aloisio, I., White, G., Hill, C. & Modi, K. Sampling complexity of open quantum systems. PRX Quantum 4, 020310 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, S.-T. & Duan, L.-M. Certification of boson sampling devices with coarse-grained measurements. Preprint at https://arxiv.org/abs/1601.02627 (2016).

  • Mao, Z.-C. et al. Experimental realization of multi-ion sympathetic cooling on a trapped ion crystal. Phys. Rev. Lett. 127, 143201 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Korenblit, S. et al. Quantum simulation of spin models on an arbitrary lattice with trapped ions. New J. Phys. 14, 095024 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Q., Shi, Y. & Zhang, J. Qubits on programmable geometries with a trapped-ion quantum processor. Preprint at https://arxiv.org/abs/2308.10179 (2023).

  • Shapira, Y., Manovitz, T., Akerman, N., Stern, A. & Ozeri, R. Quantum simulations of interacting systems with broken time-reversal symmetry. Phys. Rev. X 13, 021021 (2023).

    CAS 

    Google Scholar
     

  • Pu, Y. et al. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nature Commun. 8, 15359 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing. Phys. Rev. Lett. 125, 150505 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S.-T., Shen, C. & Duan, L.-M. Quantum computation under micromotion in a planar ion crystal. Sci. Rep. 5, 8555 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y.-K., Liu, Z.-D., Zhao, W.-D. & Duan, L.-M. High-fidelity entangling gates in a three-dimensional ion crystal under micromotion. Phys. Rev. A 103, 022419 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, S.-A. et al. Data used in ”A Site-Resolved 2D Quantum Simulator with Hundreds of Trapped Ions”. figshare https://doi.org/10.6084/m9.figshare.25572603 (2024).



  • Source link


    administrator