DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).
Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).
Joshi, M. K. et al. Exploring large-scale entanglement in quantum simulation. Nature 624, 539–544 (2023).
Li, B.-W. et al. Probing critical behavior of long-range transverse-field ising model through quantum Kibble-Zurek mechanism. PRX Quantum 4, 010302 (2023).
Britton, J. W. et al. Engineered two-dimensional ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012).
Bohnet, J. G. et al. Quantum spin dynamics and entanglement generation with hundreds of trapped ions. Science 352, 1297–1301 (2016).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).
Bharti, K. et al. Noisy intermediate-scale quantum algorithms. Rev. Mod. Phys. 94, 015004 (2022).
Ebadi, S. et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 595, 227–232 (2021).
Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).
Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).
Madsen, L. S. et al. Quantum computational advantage with a programmable photonic processor. Nature 606, 75–81 (2022).
Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).
Cerezo, M. et al. Variational quantum algorithms. Nature Rev. Phys. 3, 625–644 (2021).
Szymanski, B. et al. Large two dimensional Coulomb crystals in a radio frequency surface ion trap. Appl. Phys. Lett. 100, 171110 (2012).
Xie, Y. et al. An open-endcap blade trap for radial-2d ion crystals. Quantum Sci. Technol. 6, 044009 (2021).
Kato, A. et al. Two-tone doppler cooling of radial two-dimensional crystals in a radio-frequency ion trap. Phys. Rev. A 105, 023101 (2022).
Kiesenhofer, D. et al. Controlling two-dimensional coulomb crystals of more than 100 ions in a monolithic radio-frequency trap. PRX Quantum 4, 020317 (2023).
Qiao, M. et al. Tunable quantum simulation of spin models with a two-dimensional ion crystal. Nat. Phys. 20, 623–630 (2024).
Sterling, R. C. et al. Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip. Nature Commun. 5, 3637 (2014).
Kiefer, P. et al. Floquet-engineered vibrational dynamics in a two-dimensional array of trapped ions. Phys. Rev. Lett. 123, 213605 (2019).
Holz, P. C. et al. 2D linear trap array for quantum information processing. Adv. Quantum Technol. 3, 2000031 (2020).
Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259 (1998).
Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).
Amini, J. M. et al. Toward scalable ion traps for quantum information processing. New J. Phys. 12, 033031 (2010).
Shu, G. et al. Heating rates and ion-motion control in a \({\mathsf{Y}}\)-junction surface-electrode trap. Phys. Rev. A 89, 062308 (2014).
Burton, W. C. et al. Transport of multispecies ion crystals through a junction in a radio-frequency paul trap. Phys. Rev. Lett. 130, 173202 (2023).
Li, B.-W. et al. Observation of non-markovian spin dynamics in a Jaynes-Cummings-Hubbard model using a trapped-ion quantum simulator. Phys. Rev. Lett. 129, 140501 (2022).
Sørensen, A. & Mølmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999).
Kim, K. et al. Entanglement and tunable spin–spin couplings between trapped ions using multiple transverse modes. Phys. Rev. Lett. 103, 120502 (2009).
Baldwin, C. H. et al. High-fidelity light-shift gate for clock-state qubits. Phys. Rev. A 103, 012603 (2021).
Roman, C., Ransford, A., Ip, M. & Campbell, W. C. Coherent control for qubit state readout. New J. Phys. 22, 073038 (2020).
Edmunds, C. L. et al. Scalable hyperfine qubit state detection via electron shelving in the 2D5/2 and 2F7/2 manifolds in 171yb+. Phys. Rev. A 104, 012606 (2021).
Yang, H.-X. et al. Realizing coherently convertible dual-type qubits with the same ion species. Nature Phys. 18, 1058–1061 (2022).
Smith, A., Kim, M. S., Pollmann, F. & Knolle, J. Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inform. 5, 106 (2019).
Aloisio, I., White, G., Hill, C. & Modi, K. Sampling complexity of open quantum systems. PRX Quantum 4, 020310 (2023).
Wang, S.-T. & Duan, L.-M. Certification of boson sampling devices with coarse-grained measurements. Preprint at https://arxiv.org/abs/1601.02627 (2016).
Mao, Z.-C. et al. Experimental realization of multi-ion sympathetic cooling on a trapped ion crystal. Phys. Rev. Lett. 127, 143201 (2021).
Korenblit, S. et al. Quantum simulation of spin models on an arbitrary lattice with trapped ions. New J. Phys. 14, 095024 (2012).
Wu, Q., Shi, Y. & Zhang, J. Qubits on programmable geometries with a trapped-ion quantum processor. Preprint at https://arxiv.org/abs/2308.10179 (2023).
Shapira, Y., Manovitz, T., Akerman, N., Stern, A. & Ozeri, R. Quantum simulations of interacting systems with broken time-reversal symmetry. Phys. Rev. X 13, 021021 (2023).
Pu, Y. et al. Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells. Nature Commun. 8, 15359 (2017).
Wang, Y. et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing. Phys. Rev. Lett. 125, 150505 (2020).
Wang, S.-T., Shen, C. & Duan, L.-M. Quantum computation under micromotion in a planar ion crystal. Sci. Rep. 5, 8555 (2015).
Wu, Y.-K., Liu, Z.-D., Zhao, W.-D. & Duan, L.-M. High-fidelity entangling gates in a three-dimensional ion crystal under micromotion. Phys. Rev. A 103, 022419 (2021).
Guo, S.-A. et al. Data used in ”A Site-Resolved 2D Quantum Simulator with Hundreds of Trapped Ions”. figshare https://doi.org/10.6084/m9.figshare.25572603 (2024).