• DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article 

    Google Scholar
     

  • Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, H., Pant, M., Guha, S. & Englund, D. Percolation-based architecture for cluster state creation using photon-mediated entanglement between atomic memories. npj Quantum Inf. 5, 104 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 041041 (2014).


    Google Scholar
     

  • Nemoto, K. et al. Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014).

    CAS 

    Google Scholar
     

  • Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Welte, S., Hacker, B., Daiss, S., Ritter, S. & Rempe, G. Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8, 011018 (2018).

    CAS 

    Google Scholar
     

  • Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).

    CAS 

    Google Scholar
     

  • Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xue, X. et al. CMOS-based cryogenic control of silicon quantum circuits. Nature 593, 205–210 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bardin, J. C. et al. Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 MW at 3 K. IEEE J. Solid-State Circuits 54, 3043–3060 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Kim, D. et al. A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nat. Electron. 2, 284–289 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ibrahim, M. I., Foy, C., Englund, D. R. & Han, R. High-scalability CMOS quantum magnetometer with spin-state excitation and detection of diamond color centers. IEEE J. Solid-State Circuits 56, 1001–1014 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Iwasaki, T. et al. Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett. 119, 253601 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Trusheim, M. E. et al. Transform-limited photons from a coherent tin-vacancy spin in diamond. Phys. Rev. Lett. 124, 023602 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pauka, S. et al. A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electron. 4, 64–70 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sutula, M. et al. Large-scale optical characterization of solid-state quantum emitters. Nat. Mater. 22, 1338–1344 (2023).

  • Golter, D. A. et al. Selective and scalable control of spin quantum memories in a photonic circuit. Nano Lett. 23, 7852–7858 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Debroux, R. et al. Quantum control of the tin-vacancy spin qubit in diamond. Phys. Rev. X 11, 041041 (2021).

    CAS 

    Google Scholar
     

  • Aghaeimeibodi, S., Riedel, D., Rugar, A. E., Dory, C. & Vučković, J. Electrical tuning of tin-vacancy centers in diamond. Phys. Rev. Appl. 15, 064010 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bersin, E. et al. Individual control and readout of qubits in a sub-diffraction volume. npj Quantum Inf. 5, 38 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Görlitz, J. et al. Coherence of a charge stabilised tin-vacancy spin in diamond. npj Quantum Inf. 8, 45 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rugar, A. E. et al. Quantum photonic interface for tin-vacancy centers in diamond. Phys. Rev. X 11, 031021 (2021).

  • Kuruma, K. et al. Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond. Appl. Phys. Lett. 118, 230601 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Christen, I. et al. An integrated photonic engine for programmable atomic control. Preprint at https://arxiv.org/abs/2208.06732 (2022).

  • Kim, J. et al. 1100 x 1100 port mems-based optical crossconnect with 4-db maximum loss. IEEE Photonics Technol. Lett. 15, 1537–1539 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Palm, K. J. et al. Modular chip-integrated photonic control of artificial atoms in diamond waveguides. Optica 10, 634–641 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tillich, J.-P. & Zémor, G. Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Trans. Inform. Theory 60, 1193–1202 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 040101 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Kitaev, A. Y. in Quantum Communication, Computing, and Measurement (eds Hirota, O. et al.) 181–188 (Springer, 1997).

  • Fowler, A. G., Whiteside, A. C. & Hollenberg, L. C. Towards practical classical processing for the surface code. Phys. Rev. Lett. 108, 180501 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Litinski, D. Magic state distillation: not as costly as you think. Quantum 3, 205 (2019).

    Article 

    Google Scholar
     

  • Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The XZZX surface code. Nat. Commun. 12, 2172 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, S.-Y. et al. A 3 nm CMOS FinFlex™ platform technology with enhanced power efficiency and performance for mobile SoC and high performance computing applications. International Electron Devices Meeting, 27.5.1–27.5.4 (2022).

  • Zhu, D. et al. Superconducting nanowire single-photon detector on aluminum nitride. In Conference on Lasers and Electro-Optics FTu4C.1 (Optical Society of America, 2016).

  • Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prabhu, M. et al. Individually addressable and spectrally programmable artificial atoms in silicon photonics. Nat. Commun. 14, 2380 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruskuc, A., Wu, C.-J., Rochman, J., Choi, J. & Faraon, A. Nuclear spin-wave quantum register for a solid-state qubit. Nature 602, 408–413 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Crook, A. L. et al. Purcell enhancement of a single silicon carbide color center with coherent spin control. Nano Lett. 20, 3427–3434 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lukin, D. M. et al. 4h-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM–the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 268, 1818–1823 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mouradian, S., Wan, N. H., Schröder, T. & Englund, D. Rectangular photonic crystal nanobeam cavities in bulk diamond. Appl. Phys. Lett. 111, 021103 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Li, L., Choi, H., Heuck, M. & Englund, D. Field-based design of a resonant dielectric antenna for coherent spin-photon interfaces. Optics Expr. 29, 16469–16476 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Clark, G. et al. Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Lett. 24, 1316-1323 (2024).

  • Li, L. Architecture modeling for ‘Heterogeneous integration of spin-photon interfaces with a scalable CMOS platform’. QSoC architecture modeling. figshare https://doi.org/10.6084/m9.figshare.25374610.v1 (2024).

  • Starling, D. J. et al. Fully packaged multichannel cryogenic quantum memory module. Phys. Rev. Appl. 19, 064028 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, L. et al. Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. C. et al. A scalable cavity-based spin–photon interface in a photonic integrated circuit. Optica Quantum 2, 124–132 (2024).

  • Martínez, J. A. et al. Photonic indistinguishability of the tin-vacancy center in nanostructured diamond. Phys. Rev. Lett. 129, 173603 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Li, L. Data in ′Heterogeneous integration of spin-photon interfaces with a scalable CMOS platformʼ. figshare https://doi.org/10.6084/m9.figshare.25374583.v1 (2024).



  • Source link


    administrator