DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).
Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).
Choi, H., Pant, M., Guha, S. & Englund, D. Percolation-based architecture for cluster state creation using photon-mediated entanglement between atomic memories. npj Quantum Inf. 5, 104 (2019).
Nickerson, N. H., Fitzsimons, J. F. & Benjamin, S. C. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Phys. Rev. X 4, 041041 (2014).
Nemoto, K. et al. Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014).
Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
Welte, S., Hacker, B., Daiss, S., Ritter, S. & Rempe, G. Photon-mediated quantum gate between two neutral atoms in an optical cavity. Phys. Rev. X 8, 011018 (2018).
Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018).
Bradley, C. E. et al. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 9, 031045 (2019).
Wan, N. H. et al. Large-scale integration of artificial atoms in hybrid photonic circuits. Nature 583, 226–231 (2020).
Xue, X. et al. CMOS-based cryogenic control of silicon quantum circuits. Nature 593, 205–210 (2021).
Bardin, J. C. et al. Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 MW at 3 K. IEEE J. Solid-State Circuits 54, 3043–3060 (2019).
Kim, D. et al. A CMOS-integrated quantum sensor based on nitrogen–vacancy centres. Nat. Electron. 2, 284–289 (2019).
Ibrahim, M. I., Foy, C., Englund, D. R. & Han, R. High-scalability CMOS quantum magnetometer with spin-state excitation and detection of diamond color centers. IEEE J. Solid-State Circuits 56, 1001–1014 (2021).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).
Iwasaki, T. et al. Tin-vacancy quantum emitters in diamond. Phys. Rev. Lett. 119, 253601 (2017).
Trusheim, M. E. et al. Transform-limited photons from a coherent tin-vacancy spin in diamond. Phys. Rev. Lett. 124, 023602 (2020).
Pauka, S. et al. A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electron. 4, 64–70 (2021).
Sutula, M. et al. Large-scale optical characterization of solid-state quantum emitters. Nat. Mater. 22, 1338–1344 (2023).
Golter, D. A. et al. Selective and scalable control of spin quantum memories in a photonic circuit. Nano Lett. 23, 7852–7858 (2023).
Debroux, R. et al. Quantum control of the tin-vacancy spin qubit in diamond. Phys. Rev. X 11, 041041 (2021).
Aghaeimeibodi, S., Riedel, D., Rugar, A. E., Dory, C. & Vučković, J. Electrical tuning of tin-vacancy centers in diamond. Phys. Rev. Appl. 15, 064010 (2021).
Bersin, E. et al. Individual control and readout of qubits in a sub-diffraction volume. npj Quantum Inf. 5, 38 (2019).
Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).
Görlitz, J. et al. Coherence of a charge stabilised tin-vacancy spin in diamond. npj Quantum Inf. 8, 45 (2022).
Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).
Rugar, A. E. et al. Quantum photonic interface for tin-vacancy centers in diamond. Phys. Rev. X 11, 031021 (2021).
Kuruma, K. et al. Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond. Appl. Phys. Lett. 118, 230601 (2021).
Christen, I. et al. An integrated photonic engine for programmable atomic control. Preprint at https://arxiv.org/abs/2208.06732 (2022).
Kim, J. et al. 1100 x 1100 port mems-based optical crossconnect with 4-db maximum loss. IEEE Photonics Technol. Lett. 15, 1537–1539 (2003).
Palm, K. J. et al. Modular chip-integrated photonic control of artificial atoms in diamond waveguides. Optica 10, 634–641 (2023).
Tillich, J.-P. & Zémor, G. Quantum ldpc codes with positive rate and minimum distance proportional to the square root of the blocklength. IEEE Trans. Inform. Theory 60, 1193–1202 (2013).
Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 040101 (2021).
Kitaev, A. Y. in Quantum Communication, Computing, and Measurement (eds Hirota, O. et al.) 181–188 (Springer, 1997).
Fowler, A. G., Whiteside, A. C. & Hollenberg, L. C. Towards practical classical processing for the surface code. Phys. Rev. Lett. 108, 180501 (2012).
Litinski, D. Magic state distillation: not as costly as you think. Quantum 3, 205 (2019).
Bonilla Ataides, J. P., Tuckett, D. K., Bartlett, S. D., Flammia, S. T. & Brown, B. J. The XZZX surface code. Nat. Commun. 12, 2172 (2021).
Wu, S.-Y. et al. A 3 nm CMOS FinFlex™ platform technology with enhanced power efficiency and performance for mobile SoC and high performance computing applications. International Electron Devices Meeting, 27.5.1–27.5.4 (2022).
Zhu, D. et al. Superconducting nanowire single-photon detector on aluminum nitride. In Conference on Lasers and Electro-Optics FTu4C.1 (Optical Society of America, 2016).
Xue, X. et al. Quantum logic with spin qubits crossing the surface code threshold. Nature 601, 343–347 (2022).
Gyger, S. et al. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun. 12, 1408 (2021).
Lomonte, E. et al. Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits. Nat. Commun. 12, 6847 (2021).
Prabhu, M. et al. Individually addressable and spectrally programmable artificial atoms in silicon photonics. Nat. Commun. 14, 2380 (2023).
Higginbottom, D. B. et al. Optical observation of single spins in silicon. Nature 607, 266–270 (2022).
Ruskuc, A., Wu, C.-J., Rochman, J., Choi, J. & Faraon, A. Nuclear spin-wave quantum register for a solid-state qubit. Nature 602, 408–413 (2022).
Crook, A. L. et al. Purcell enhancement of a single silicon carbide color center with coherent spin control. Nano Lett. 20, 3427–3434 (2020).
Lukin, D. M. et al. 4h-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).
Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).
Kim, J.-H., Aghaeimeibodi, S., Carolan, J., Englund, D. & Waks, E. Hybrid integration methods for on-chip quantum photonics. Optica 7, 291–308 (2020).
Elshaari, A. W., Pernice, W., Srinivasan, K., Benson, O. & Zwiller, V. Hybrid integrated quantum photonic circuits. Nat. Photon. 14, 285–298 (2020).
Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. SRIM–the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B: Beam Interact. Mater. At. 268, 1818–1823 (2010).
Mouradian, S., Wan, N. H., Schröder, T. & Englund, D. Rectangular photonic crystal nanobeam cavities in bulk diamond. Appl. Phys. Lett. 111, 021103 (2017).
Li, L., Choi, H., Heuck, M. & Englund, D. Field-based design of a resonant dielectric antenna for coherent spin-photon interfaces. Optics Expr. 29, 16469–16476 (2021).
Clark, G. et al. Nanoelectromechanical control of spin–photon interfaces in a hybrid quantum system on chip. Nano Lett. 24, 1316-1323 (2024).
Li, L. Architecture modeling for ‘Heterogeneous integration of spin-photon interfaces with a scalable CMOS platform’. QSoC architecture modeling. figshare https://doi.org/10.6084/m9.figshare.25374610.v1 (2024).
Starling, D. J. et al. Fully packaged multichannel cryogenic quantum memory module. Phys. Rev. Appl. 19, 064028 (2023).
Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).
Li, L. et al. Coherent spin control of a nanocavity-enhanced qubit in diamond. Nat. Commun. 6, 6173 (2015).
Chen, K. C. et al. A scalable cavity-based spin–photon interface in a photonic integrated circuit. Optica Quantum 2, 124–132 (2024).
Martínez, J. A. et al. Photonic indistinguishability of the tin-vacancy center in nanostructured diamond. Phys. Rev. Lett. 129, 173603 (2022).
Li, L. Data in ′Heterogeneous integration of spin-photon interfaces with a scalable CMOS platformʼ. figshare https://doi.org/10.6084/m9.figshare.25374583.v1 (2024).