• Kotloff, K. L. et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet 382, 209–222 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Khalil, I. A. et al. Morbidity, mortality, and long-term consequences associated with diarrhoea from Cryptosporidium infection in children younger than 5 years: a meta-analyses study. Lancet Glob. Health 6, e758–e768 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Checkley, W. et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect. Dis. 15, 85–94 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • English, E. D., Guerin, A., Tandel, J. & Striepen, B. Live imaging of the Cryptosporidium parvum life cycle reveals direct development of male and female gametes from type I meronts. PLoS Biol. 20, e3001604 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Striepen, B. Parasitic infections: time to tackle cryptosporidiosis. Nature 503, 189–191 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Current, W. L. & Reese, N. C. A comparison of endogenous development of three isolates of Cryptosporidium in suckling mice. J. Protozool. 33, 98–108 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gharpure, R. et al. Cryptosporidiosis Outbreaks—United States, 2009–2017. MMWR Morb. Mortal. Wkly Rep. 68, 568–572 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tandel, J. et al. Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum. Nat. Microbiol. 4, 2226–2236 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, W. et al. Multiple introductions and recombination events underlie the emergence of a hyper-transmissible Cryptosporidium hominis subtype in the USA. Cell Host Microbe 31, 112–123 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nader, J. L. et al. Evolutionary genomics of anthroponosis in Cryptosporidium. Nat. Microbiol. 4, 826–836 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guerin, A. & Striepen, B. The biology of the intestinal intracellular parasite Cryptosporidium. Cell Host Microbe 28, 509–515 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kissinger, J. C., Hermetz, K. E., Woods, K. M. & Upton, S. J. Enrichment of Cryptosporidium parvum from in vitro culture as measured by total RNA and subsequent sequence analysis. Mol. Biochem. Parasitol. 220, 5–9 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guerin, A. et al. Cryptosporidium uses multiple distinct secretory organelles to interact with and modify its host cell. Cell Host Microbe 31, 650–664 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vetterling, J. M., Jervis, H. R., Merrill, T. G. & Sprinz, H. Cryptosporidium wrairi sp. n. from the guinea pig Cavia porcellus, with an emendation of the genus. J. Protozool. 18, 243–247 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumani, R. S. et al. A suite of phenotypic assays to ensure pipeline diversity when prioritizing drug-like Cryptosporidium growth inhibitors. Nat. Commun. 10, 1862 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tandel, J. et al. Genetic ablation of a female-specific Apetala 2 transcription factor blocks oocyst shedding in Cryptosporidium parvum. mBio 14, e0326122 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Li, Y., Baptista, R. P., Sateriale, A., Striepen, B. & Kissinger, J. C. Analysis of long non-coding RNA in Cryptosporidium parvum reveals significant stage-specific antisense transcription. Front. Cell Infect. Microbiol. 10, 608298 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tyzzer, E. E. An extracellular Coccidium, Cryptosporidium Muris (Gen. Et Sp. Nov.), of the gastric glands of the common mouse. J. Med. Res. 23, 487–510 (1910).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samuelson, J., Bushkin, G. G., Chatterjee, A. & Robbins, P. W. Strategies to discover the structural components of cyst and oocyst walls. Eukaryot. Cell 12, 1578–1587 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Templeton, T. J. et al. The Cryptosporidium oocyst wall protein is a member of a multigene family and has a homolog in Toxoplasma. Infect. Immun. 72, 980–987 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spano, F., Puri, C., Ranucci, L., Putignani, L. & Crisanti, A. Cloning of the entire COWP gene of Cryptosporidium parvum and ultrastructural localization of the protein during sexual parasite development. Parasitology 114, 427–437 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Katrib, M. et al. Stage-specific expression of protease genes in the apicomplexan parasite, Eimeria tenella. BMC Genomics 13, 685 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belli, S. I., Wallach, M. G., Luxford, C., Davies, M. J. & Smith, N. C. Roles of tyrosine-rich precursor glycoproteins and dityrosine- and 3,4-dihydroxyphenylalanine-mediated protein cross-linking in development of the oocyst wall in the coccidian parasite Eimeria maxima. Eukaryot. Cell 2, 456–464 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abrahamsen, M. S. et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304, 441–445 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pasquale, S. M. & Goodenough, U. W. Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas Reinhardtii. J. Cell Biol. 105, 2279–2292 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev. 22, 1051–1068 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snell, W. J. Uncovering an ancestral green menage a trois: contributions of Chlamydomonas to the discovery of a broadly conserved triad of plant fertilization proteins. Curr. Opin. Plant Biol. 69, 102275 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kafsack, B. F. et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507, 248–252 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinha, A. et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature 507, 253–257 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russell, A. J. C. et al. Regulators of male and female sexual development are critical for the transmission of a malaria parasite. Cell Host Microbe 31, 305–319 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gomes, A. R. et al. A transcriptional switch controls sex determination in Plasmodium falciparum. Nature 612, 528–533 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oberstaller, J., Joseph, S. J. & Kissinger, J. C. Genome-wide upstream motif analysis of Cryptosporidium parvum genes clustered by expression profile. BMC Genomics 14, 516 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brownfield, L. et al. A plant germline-specific integrator of sperm specification and cell cycle progression. PLoS Genet. 5, e1000430 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dubos, C. et al. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–581 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Waldman, B. S. et al. Identification of a master regulator of differentiation in Toxoplasma. Cell 180, 359–372 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herm-Götz, A. et al. Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nat. Methods 4, 1003–1005 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vinayak, S. et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature 523, 477–480 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Choudhary, H. H., Nava, M. G., Gartlan, B. E., Rose, S. & Vinayak, S. A conditional protein degradation system to study essential gene function in Cryptosporidium parvum. mBio 11, e01231-20 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, R., Beatty, W. L., Greigert, V., Witola, W. H. & Sibley, L. D. Multiple pathways for glucose phosphate transport and utilization support growth of Cryptosporidium parvum. Nat. Commun. 15, 380 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, S. et al. Genetic crosses within and between species of Cryptosporidium. Proc. Natl Acad. Sci. USA 121, e2313210120 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pawlowic, M. C., Vinayak, S., Sateriale, A., Brooks, C. F. & Striepen, B. Generating and maintaining transgenic Cryptosporidium parvum parasites. Curr. Protoc. Microbiol. 46, 20B.22.21–20B.22.32 (2017).

    Article 

    Google Scholar
     

  • Alvarez-Jarreta, J. et al. VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center in 2023. Nucleic Acids Res. 52, D808–D816 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Sateriale, A., Pawlowic, M., Vinayak, S., Brooks, C. & Striepen, B. Genetic manipulation of Cryptosporidium parvum with CRISPR/Cas9. Methods Mol. Biol. 2052, 219–228 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, G. X. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381–386 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baptista, R. P. et al. Long-read assembly and comparative evidence-based reanalysis of Cryptosporidium genome sequences reveal expanded transporter repertoire and duplication of entire chromosome ends including subtelomeric regions. Genome Res. 32, 203–213 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME suite. Nucleic Acids Res. 43, W39–W49 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mauzy, M. J., Enomoto, S., Lancto, C. A., Abrahamsen, M. S. & Rutherford, M. S. The Cryptosporidium parvum transcriptome during in vitro development. PLoS ONE 7, e31715 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link