• Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bøggild, P. Research on scalable graphene faces a reproducibility gap. Nat. Commun. 14, 1126 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, L. et al. Towards super-clean graphene. Nat. Commun. 10, 1912 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268–4272 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kidambi, P. R. et al. Observing graphene grow: catalyst–graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett. 13, 4769–4778 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z. J. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 9, 1506–1519 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braeuninger-Weimer, P., Brennan, B., Pollard, A. J. & Hofmann, S. Understanding and controlling Cu-catalyzed graphene nucleation: the role of impurities, roughness, and oxygen scavenging. Chem. Mater. 28, 8905–8915 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J., Park, J. H., Lu, A. Y. & Kong, J. Electrical control of chemical vapor deposition of graphene. J. Am. Chem. Soc. 144, 22925–22932 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, X. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 11, 930–935 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Polsen, E. S., McNerny, D. Q., Viswanath, B., Pattinson, S. W. & John Hart, A. High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci. Rep. 5, 10257 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, B. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337–12345 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burton, O. J., Massabuau, F. C. P., Veigang-Radulescu, V. P., Brennan, B., Pollard, A. J. & Hofmann, S. Integrated wafer scale growth of single crystal metal films and high quality graphene. ACS Nano 14, 13593–13601 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, B. et al. Growth of ultraflat graphene with greatly enhanced mechanical properties. Nano Lett. 20, 6798–6806 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, J. et al. Large-area synthesis of superclean graphene via selective etching of amorphous carbon with carbon dioxide. Angew. Chem. Int. Edn 58, 14446–14451 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. The role of Cu crystallographic orientations towards growing superclean graphene on meter-sized scale. Nano Res. 15, 3775–3780 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hao, Y. et al. The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342, 720–723 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, W. et al. Oxidative-etching-assisted synthesis of centimeter-sized single-crystalline graphene. Adv. Mater. 28, 3152–3158 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, L. et al. Rapid growth of large single-crystalline graphene via second passivation and multistage carbon supply. Adv. Mater. 28, 4671–4677 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chuang, M. C. & Woon, W. Y. Nucleation and growth dynamics of graphene on oxygen exposed copper substrate. Carbon 103, 384–390 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Choubak, S. et al. Graphene CVD: interplay between growth and etching on morphology and stacking by hydrogen and oxidizing impurities. J. Phys. Chem. C 118, 21532–21540 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Choubak, S., Biron, M., Levesque, P. L., Martel, R. & Desjardins, P. No graphene etching in purified hydrogen. J. Phys. Chem. Lett. 4, 1100–1103 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J., Zhang, L. & Ding, F. Kinetics of graphene and 2D materials growth. Adv. Mater. 31, 1801583 (2019).

    Article 

    Google Scholar
     

  • Zhang, W., Wu, P., Li, Z. & Yang, J. First-principles thermodynamics of graphene growth on Cu surfaces. J. Phys. Chem. C 115, 17782–17787 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, S., Meng, L. & Wang, J. Greatly improved methane dehydrogenation via Ni adsorbed Cu(100) surface. J. Phys. Chem. C 117, 14796–14803 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mao, Z. & Campbell, C. T. Apparent activation energies in complex reaction mechanisms: a simple relationship via degrees of rate control. ACS Catal. 9, 9465–9473 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. New growth frontier: superclean graphene. ACS Nano 14, 10796–10803 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burton, O. J. et al. Putting high-index Cu on the map for high-yield, dry-transferred CVD graphene. ACS Nano 17, 1229–1238 (2022).

    Article 

    Google Scholar
     

  • Schmitz, M. et al. Fractional quantum Hall effect in CVD-grown graphene. 2D Mater. 7, 041007 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cançado, L. G. et al. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190–3196 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pezzini, S., Mišeikis, V., Pace, S., Rossella, F., Watanabe, K., Taniguchi, T. & Coletti, C. High-quality electrical transport using scalable CVD graphene. 2D Mater. 7, 041003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zeng, Y. et al. High-quality magnetotransport in graphene using the edge-free Corbino geometry. Phys. Rev. Lett. 122, 137701 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Polshyn, H. et al. Quantitative transport measurements of fractional quantum Hall energy gaps in edgeless graphene devices. Phys. Rev. Lett. 121, 226801 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 2816–2819 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, e1500222 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, D. et al. The wet-oxidation of a Cu(111) foil coated by single crystal graphene. Adv. Mater. 33, 2102697 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vidal, R. & West, A. C. Copper electropolishing in concentrated phosphoric acid: II. Theoretical interpretation. J. Electrochem. Soc. 142, 2689–2694 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leong, W. S. et al. Paraffin-enabled graphene transfer. Nat. Commun. 10, 867 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, L. et al. Uniform thin ice on ultraflat graphene for high-resolution cryo-EM. Nat. Methods 20, 123–130 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amontree, J. et al. Source data for: Reproducible graphene synthesis by oxygen-free chemical vapour deposition. Zenodo https://doi.org/10.5281/zenodo.10957342 (2024).



  • Source link


    administrator