• Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photon. 16, 637–643 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, B. et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Bright and stable light-emitting diodes based on perovskite quantum dots in perovskite matrix. J. Am. Chem. Soc. 143, 15606–15615 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kuang, C. et al. Critical role of additive-induced molecular interaction on the operational stability of perovskite light-emitting diodes. Joule 5, 618–630 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photon. 15, 379–385 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 33, 2103268 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vashishtha, P. & Halpert, J. E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29, 5965–5973 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Han, T.-H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).

    Article 

    Google Scholar
     

  • Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv. Mater. 29, 1603885 (2017).

    Article 

    Google Scholar
     

  • Huang, H., Bodnarchuk, M. I., Kershaw, S. V., Kovalenko, M. V. & Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2, 2071–2083 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Y. et al. Suppressed ion migration in low-dimensional perovskites. ACS Energy Lett. 2, 1571–1572 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Qing, J. et al. Spacer cation alloying in Ruddlesden–Popper perovskites for efficient red light-emitting diodes with precisely tunable wavelengths. Adv. Mater. 33, 2104381 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. et al. Pure red light-emitting diodes based on quantum confined quasi-two-dimensional perovskites with cospacer cations. ACS Energy Lett. 6, 2386–2394 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nelson, R. et al. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 41, 1931–1940 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shang, Y. et al. Highly stable hybrid perovskite light-emitting diodes based on Dion–Jacobson structure. Sci. Adv. 5, eaaw8072 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y. et al. Highly efficient spectrally stable red perovskite light-emitting diodes. Adv. Mater. 30, 1707093 (2018).

    Article 

    Google Scholar
     

  • Wang, K. et al. Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nat. Commun. 14, 397 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tremblay, M.-H. et al. Hybrid organic lead iodides: role of organic cation structure in obtaining 1D chains of face-sharing octahedra vs 2D perovskites. Chem. Mater. 34, 935–946 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Aakeröy, C. B. & Seddon, K. R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 22, 397–407 (1993).

    Article 

    Google Scholar
     

  • Liao, Y. et al. Anti‐dissociation passivation via bidentate anchoring for efficient carbon‐based CsPbI2.6Br0.4 solar cells. Adv. Funct. Mater. 33, 2214784 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Sun, X. et al. Methoxy functionalization of phenethylammonium ligand for efficient perovskite light‐emitting diodes. Adv. Opt. Mater. 11, 2300464 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Shi, P. et al. Oriented nucleation in formamidinium perovskite for photovoltaics. Nature 620, 323–327 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, D. et al. Tautomeric mixture coordination enables efficient lead-free perovskite LEDs. Nature 622, 493–498 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, R. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, M. et al. A transient-electroluminescence study on perovskite light-emitting diodes. Appl. Phys. Lett. 115, 041102 (2019).

    Article 

    Google Scholar
     

  • Gunawan, O. et al. Carrier-resolved photo-Hall effect. Nature 575, 151–155 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. & Noh, J. H. Steady-state transporting properties of halide perovskite thin films under 1 sun through photo-Hall effect measurement. J. Phys. Chem. C 126, 9559–9566 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cho, C. & Greenham, N. C. Computational study of dipole radiation in re‐absorbing perovskite semiconductors for optoelectronics. Adv. Sci. 8, 2003559 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ravi, V. K. et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J. Phys. Chem. Lett. 8, 4988–4994 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dang, Z. et al. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 11, 2124–2132 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • ten Brinck, S. & Infante, I. Surface termination, morphology, and bright photoluminescence of cesium lead halide perovskite nanocrystals. ACS Energy Lett. 1, 1266–1272 (2016).

    Article 

    Google Scholar
     

  • Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link