• Duncker, H. R. The lung air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergeb. Anat. Entwicklungsgesch. 45, 1–171 (1971).


    Google Scholar
     

  • King, A. S. in International Review of General and Experimental Zoology Vol. 2 (eds Felts, J. L. & Harrison, R. J.) 96 (Academic, 1966).

  • Maina, J. N. What it takes to fly: the structural and functional respiratory refinements in birds and bats. J. Exp. Biol. 203, 3045–3064 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lockner, F. R. & Murrish, D. E. Interclavicular air sac pressures and vocalization in mallard ducks Anas platyrhynchos. Compar. Biochem. Physiol. A 52, 183–187 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Plummer, E. M. & Goller, F. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch. J. Exp. Biol. 211, 66–78 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Akester, A. R., Pomeroy, D. E. & Purton, M. D. Subcutaneous air pourches in the Marabou stork (Leptoptilos crumeniferus). J. Zool. 170, 493–499 (1973).

    Article 

    Google Scholar
     

  • Rusli, M. A brief report on the development of dorsal air sacs in hand reared Von der Decken’s hornbills (Tockus deckeni). Avian Biol. Res. 13, 87–91 (2020).

    Article 

    Google Scholar
     

  • Daoust, P.-Y., Dobbin, G. V., Ridlington Abbot, R. C. F. & Dawson, S. D. Descriptive anatomy of the subcutaneous air diverticula in the northern gannet Morus bassanus. Seabird 21, 64–76 (2008).

    Article 

    Google Scholar
     

  • Richardson, F. Functional aspects of the pneumatic system of the California brown pelican. Condor 41, 13–17 (1939).

    Article 

    Google Scholar
     

  • Groebbels, F. Der Vogel Vol. I (Borntraeger, 1932).

  • Strasser, H. Ueber die Luftsäcke der Vögel. Gegenbaurs Morphol. Jahrbuch 3, 179–225 (1877).


    Google Scholar
     

  • Biewener, A. A. Muscle function in avian flight: achieving power and control. Philos. Trans. R. Soc. B 366, 1496–1506 (2011).

    Article 

    Google Scholar
     

  • Hamlet, M. P. & Fisher, H. I. Air sacs of respiratory origin in some procellariiform birds. Condor 69, 586–595 (1967).

    Article 

    Google Scholar
     

  • Ulrich, F. in Wissenschaftliche Ergebnisse der deutschenTiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899 Vol. 7, 319–342 (1904).

  • Brackenbury, J. H. Airflow dynamics in the avian lung as determined by direct and indirect methods. Respir. Physiol. 13, 319–329 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bretz, W. L. & Schmidt-Nielsen, K. Bird respiration: flow patterns in the duck lung. J. Exp. Biol. 54, 103–118 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruderer, B., Peter, D., Boldt, A. & Liechti, F. Wing-beat characteristics of birds recorded with tracking radar and cine camera. Ibis 152, 272–291 (2010).

    Article 

    Google Scholar
     

  • Lovette, I. J. & Fitzpatrick, J. W. (eds) The Cornell Lab of Ornithology Handbook of Bird Biology (Wiley, 2016).

  • Pennycuick, C. J. Modelling the Flying Bird (Elsevier, 2008).

  • Huelsenbeck, J. P., Nielsen, R. & Bollback, J. P. Stochastic mapping of morphological characters. Syst. Biol. 52, 131–158 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).

    Article 

    Google Scholar
     

  • Garde, B. et al. Thermal soaring in tropicbirds suggests that diverse seabirds may use this strategy to reduce flight costs. Mar. Ecol. Progr. Ser. 723, 171–183 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hedrick, T. L., Pichot, C. & de Margerie, E. Gliding for a free lunch: biomechanics of foraging flight in common swifts (Apus apus). J. Exp. Biol. 221, jeb186270 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Sapir, N., Wikelski, M., McCue, M. D., Pinshow, B. & Nathan, R. Flight modes in migrating european bee-eaters: heart rate may indicate low metabolic rate during soaring and gliding. PLoS One 5, e13956 (2010).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of descrete characters. Proc. R. Soc. B 255, 37–45 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Felsenstein, J. A comparative method for both discrete and continuous characters using the threshold model. Am. Nat. 179, 145–156 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Charles, J., Kissane, R., Hoerhurtner, T. & Bates, K. T. From fibre to function: are we accurately representing muscle architecture and performance? Biol. Rev. 97, 1640–1676 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Tobalske, B. W. Biomechanics of bird flight. J. Exp. Biol. 210, 3135–3146 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Owen, R. in The Cyclopædia of Anatomy and Physiology Vol. 1 (ed. Todd, R. B.) 265–358 (Sherwood, Gilbert and Piper, 1836).

  • Azizi, E., Brainerd, E. L. & Roberts, T. J. Variable gearing in pennate muscles. Proc. Natl Acad. Sci. USA 105, 1745–1750 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, N. P., Barclay, C. J. & Loiselle, D. S. The efficiency of muscle contraction. Prog. Biophys. Mol. Biol. 88, 1–58 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Casler, C. L. The air-sac systems and buoyancy of the anhinga and double-crested cormorant. Auk 90, 324–340 (1973).


    Google Scholar
     

  • Boggs, D. F. Interactions between locomotion and ventilation in tetrapods. Compar. Biochem. Physiol. A 133, 269–288 (2002).

    Article 

    Google Scholar
     

  • Boggs, D. F., Jenkins, F. A. Jr & Dial, K. P. The effects of the wingbeat cycle on respiration in black-billed magpies (Pica pica). J. Exp. Biol. 200, 1403–1412 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawson, A. B., Hedrick, B. P., Echols, S. & Schachner, E. R. Anatomy, variation, and asymmetry of the bronchial tree in the African grey parrot (Psittacus erithacus). J. Anat. 282, 701–719 (2021).


    Google Scholar
     

  • Schachner, E. R. et al. Perspectives on lung visualization: three-dimensional anatomical modeling of computed and micro-computed tomographic data in comparative evolutionary morphology and medicine with applications for COVID-19. Anat. Rec. https://doi.org/10.1002/ar.25300 (2023).

    Article 

    Google Scholar
     

  • Lowi-Merri, T. M., Benson, R. B. J., Claramunt, S. & Evans, D. C. The relationship between sternum variation and mode of locomotion in birds. BMC Biol. 19, 165 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lowi-Merri, T. M. et al. Reconstructing locomotor ecology of extinct avialans: a case study of Ichthyornis comparing sternum morphology and skeletal proportions. Proc. R. Soc. B 290, 20222020 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–491 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2, 217–223 (2012).

    Article 

    Google Scholar
     

  • Maddison, W. P. & FitzJohn, R. G. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst. Biol. 64, 127–136 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Uyeda, J. C., Zenil-Ferguson, R. & Pennell, M. W. Rethinking phylogenetic comparative methods. Syst. Biol. 67, 1091–1109 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Revell, L. J. Ancestral character estimation under the threshold model from quantitative genetics. Evolution 68, 743–759 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kissane, R. W. P., Egginton, S. & Askew, G. N. Regional variation in the mechanical properties and fibre-type composition of the rat extensor digitorum longus muscle. Exp. Physiol. 103, 111–124 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Boggs, D. F. & Dial, K. P. Neuromuscular organization and regional EMG activity of the pectoralis in the pigeon. J. Morphol. 218, 43–57 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Bates, K. T. & Schachner, E. R. Disparity and convergence in bipedal archosaur locomotion. J. R. Soc. Interface 70, 1339–1353 (2012).

    Article 

    Google Scholar
     

  • Dempsey, M., Maidment, S. C. R., Hedrick, B. P. & Bates, K. T. Convergent evolution of quadrupedalism in ornithischian dinosaurs was achieved through disparate forelimb muscle mechanics. Proc. R. Soc. B 290, 20222435 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macaulay, S. et al. Decoupling body shape and mass-distribution in birds and their dinosaurian ancestors. Nat. Commun. 14, 1575 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link


    administrator