• Zanotto, E. D. & Mauro, J. C. The glassy state of matter: its definition and ultimate fate. J. Non Cryst. Solids 471, 490–495 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shelby, J. E. Introduction to Glass Science and Technology (Royal Society of Chemistry, 2005).

  • Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proc. Natl Acad. Sci. USA 117, 11299–11305 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Z. et al. Highly compressible glass-like supramolecular polymer networks. Nat. Mater. 21, 103–109 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Q. et al. Formation of a supramolecular polymeric adhesive via water-participant hydrogen bond formation. J. Am. Chem. Soc. 141, 8058–8063 (2020).

    Article 

    Google Scholar
     

  • Dong, S. et al. Structural water as an essential comonomer in supramolecular polymerization. Sci. Adv. 3, eaao0900 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barrat, J. L., Baschnagel, J. & Lyulin, A. Molecular dynamics simulations of glassy polymers. Soft Matter 6, 3430–3446 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Colmenero, J. Are polymers standard glass-forming systems? the role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers. J. Phys. Condens. Matter 27, 103101 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Balkenende, D. W. R., Monnier, C. A., Fiore, G. L. & Weder, C. Optically responsive supramolecular polymer glasses. Nat. Commun. 7, 1–9 (2016).

    Article 

    Google Scholar
     

  • Lebel, O. & Soldera, A. in Advanced Materials (eds van de Ven, T. & Soldera, A.) 239–260 (De Gruyter, 2019).

  • Wuest, J. D. & Lebel, O. Anarchy in the solid state: structural dependence on glass-forming ability in triazine-based molecular glasses. Tetrahedron 65, 7393–7402 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Chaplin, M. Do we underestimate the importance of water in cell biology? Nat. Rev. 7, 861–866 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Hazra, P., Chakrabarty, D. & Sarkar, N. Intramolecular charge transfer and solvation dynamics of Coumarin 152 in aerosol-OT, water-solubilizing reverse micelles, and polar organic solvent solubilizing reverse micelles. Langmuir 18, 7872–7879 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tao, K., Makam, P., Aizen, R. & Gazit, E. Self-assembling peptide semiconductors. Science 358, eaam9756 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilead, S. & Gazit, E. Self-organization of short peptide fragments: from amyloid fibrils to nanoscale supramolecular assemblies. Supramol. Chem. 17, 87–92 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X. & Zhang, S. Designer self-assembling peptide materials. Macromol. Biosci. 7, 13–22 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Cui, H., Webber, M. J. & Stupp, S. I. Self‐assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept. Sci. 94, 1–18 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Fleming, S. & Ulijn, R. V. Design of nanostructures based on aromatic peptide amphiphiles. Chem. Soc. Rev. 43, 8150–8177 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knowles, T. P. J., Oppenheim, T. W., Buell, A. K., Chirgadze, D. Y. & Welland, M. E. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nat. Nanotechnol. 5, 3–6 (2010).

    Article 

    Google Scholar
     

  • Chung, C. W. et al. Label-free characterization of amyloids and alpha-synuclein polymorphs by exploiting their intrinsic fluorescence property. Anal. Chem. 13, 5367–5374 (2022).

    Article 

    Google Scholar
     

  • Adler-Abramovich, L. et al. Bioinspired flexible and tough layered peptide crystals. Adv. Mater. 30, 1–6 (2018).


    Google Scholar
     

  • Adler-Abramovich, L. & Gazit, E. The physical properties of supramolecular peptide assemblies: From building block association to technological applications. Chem. Soc. Rev. 43, 6881–6893 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lampel, A., Ulijn, R. V. & Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 47, 3737–3758 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ulijn, R. V. & Smith, A. M. Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664–675 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kholkin, A., Amdursky, N., Bdikin, I., Gazit, E. & Rosenman, G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano 4, 610–614 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, X. & Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev. 39, 1877–1890 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnon, Z. A. et al. On-off transition and ultrafast decay of amino acid luminescence driven by modulation of supramolecular packing. iScience 24, 102695 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, W. et al. Rigid tightly packed amino acid crystals as functional supramolecular materials. ACS Nano 13, 14477–14485 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhdanova, N. G. et al. Tyrosine fluorescence probing of the surfactant-induced conformational changes of albumin. Photochem. Photobiol. Sci. 14, 897–908 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jang, H.-S. et al. Tyrosine-mediated two-dimensional peptide assembly and its role as a bio-inspired catalytic scaffold. Nat. Commun. 5, 3665 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Brillante, B. A. et al. Characterization of phase purity in organic semiconductors by lattice-phonon confocal Raman mapping: application to pentacene. Adv. Mater. 17, 2549–2553 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Xing, R., Yuan, C., Fan, W., Ren, X. & Yan, X. Biomolecular glass with amino acid and peptide nanoarchitectonics. Sci. Adv. 9, eadd8105 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yokota, H., Sakata, H., Nishibori, M. & Kinosita, K. Ellipsometric study of polished glass surfaces. Surf. Sci. 16, 265–274 (1969).

    Article 
    ADS 

    Google Scholar
     

  • Jeener, J., Meier, B. H., Bachmann, P. & Ernst, R. R. Investigation of exchange processes by two‐dimensional NMR spectroscopy. J. Chem. Phys. 71, 4546–4553 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hibbert, F. & Emsley, J. Hydrogen bonding and chemical reactivity. Adv. Phys. Org. Chem. 26, 255–379 (1990).

    CAS 

    Google Scholar
     

  • Davis, J. H., Jeffrey, K. R., Bloom, M., Valic, M. I. & Higgs, T. P. Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 42, 390–394 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Larsen, F. H. in Annual Reports on NMR Spectroscopy Vol. 71 (ed. Webb, G. A.) 103–137 (Elsevier, 2010).

  • Hernández, B., Coïc, Y., Pflüger, F., Kruglik, G. & Ghomi, M. All characteristic Raman markers of tyrosine and tyrosinate originate from phenol ring fundamental vibrations. J. Raman Spectrosc. 47, 210–220 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Ihli, J. et al. Mechanical adaptation of brachiopod shells via hydration-induced structural changes. Nat. Commun. 12, 5383 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, H. et al. Fracture behavior of colloidal polymer particles in fast-frozen suspensions viewed by cryo-SEM. Macromolecules 39, 5531–5539 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Desloir, M., Benoit, C., Bendaoud, A., Alcouffe, P. & Carrot, C. Plasticization of poly(vinyl butyral) by water: glass transition temperature and mechanical properties. J. Appl. Polym. Sci. 136, 47230 (2019).

    Article 

    Google Scholar
     

  • Kilburn, D. et al. Water in glassy carbohydrates: opening it up at the nanolevel. Phys. Chem. 33, 12436–12441 (2004).


    Google Scholar
     

  • Flores, A., Ania, F. & Baltá-Calleja, F. J. From the glassy state to ordered polymer structures: A microhardness study. Polymer 50, 729–746 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q., Chen, H., Wang, Y. & Sun, J. Thermal shock effect on the glass thermal stress response and crack propagation. Procedia Eng. 62, 717–724 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Frankberg, E. J. et al. Highly ductile amorphous oxide at room temperature and high strain rate. Science 366, 864–869 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, W., Tonelli, M. & Markley, J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015).

    Article 
    PubMed 

    Google Scholar
     



  • Source link