• IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Coats, S. & Karnauskas, K. Are simulated and observed twentieth century tropical Pacific sea surface temperature trends significant relative to internal variability? Geophys. Res. Lett. 44, 9928–9937 (2017).

    Article 

    Google Scholar
     

  • McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

    Article 

    Google Scholar
     

  • Rugenstein, M. et al. Connecting pattern problem and hot model problem. Geophys. Res. Lett. 50, e2023GL105488 (2023).

    Article 

    Google Scholar
     

  • Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546 (2012).

    Article 

    Google Scholar
     

  • Watanabe, M., Dufresne, J.-L., Kosaka, Y., Mauritsen, T. & Tatebe, H. Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient. Nat. Clim. Change 11, 33–37 (2021).

    Article 

    Google Scholar
     

  • Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).

    Article 

    Google Scholar
     

  • Sobel, A. H. et al. Near-term tropical cyclone risk and coupled Earth system model biases. Proc. Natl Acad. Sci. USA 120, e2209631120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andrews, T. et al. Accounting for changing temperature patterns increases historical estimates of climate sensitivity. Geophys. Res. Lett. 45, 8490–8499 (2018).

    Article 

    Google Scholar
     

  • Ceppi, P. & Gregory, J. M. Relationship of tropospheric stability to climate sensitivity and Earth’s observed radiation budget. Proc. Natl Acad. Sci. USA 114, 13126–13131 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, C., Zelinka, M. & Klein, S. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 9, 871–874 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dong, Y., Proistosescu, C., Armour, K. C. & Battisti, D. S. Attributing historical and future evolution of radiative feedbacks to regional warming patterns using a Green’s function approach: the preeminence of the western Pacific. J. Clim. 32, 5471–5491 (2019).

    Article 

    Google Scholar
     

  • Stevens, B., Sherwood, S. C., Bony, S. & Webb, M. J. Prospects for narrowing bounds on Earth’s equilibrium climate sensitivity. Earth’s Future 4, 512–522 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020). This study carried out a community-based assessment of the equilibrium climate sensitivity, in which the pattern effect on climate feedbacks is thoroughly discussed.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).

  • Zhou, C., Zelinka, M. D., Dessler, A. E. & Wang, M. Greater committed warming after accounting for the pattern effect. Nat. Clim. Change 11, 132–136 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the Walker circulation: implications for projections. J. Clim. 28, 20–35 (2015).

    Article 

    Google Scholar
     

  • Capotondi, A. et al. Mechanisms of tropical Pacific decadal variability. Nat. Rev. Earth Env. 4, 754–769 (2023).

    Article 

    Google Scholar
     

  • Chung, E. S., Timmermann, A., Soden, B. J., Ha, K.-J. & John, V. O. Reconciling opposing Walker circulation trends in observations and model projections. Nat. Clim. Change 9, 405–412 (2019).

    Article 

    Google Scholar
     

  • Olonscheck, D., Rugenstein, M. & Marotzke, J. Broad consistency between observed and simulated trends in sea surface temperature patterns. Geophys. Res. Lett. 47, e2019GL086773 (2020).

    Article 

    Google Scholar
     

  • Wills, R., Dong, Y., Proistosecu, C., Armour, K. & Battisti, D. Systematic climate model biases in the large-scale patterns of recent sea-surface temperature and sea-level pressure change. Geophys. Res. Lett. 49, e2022GL100011 (2022). This study systematically compares the past trends in the zonal SST gradient and the Walker circulation between observations and large-ensemble historical simulations by CMIP5 and CMIP6 climate models.

    Article 

    Google Scholar
     

  • Lee, S. et al. On the future zonal contrasts of equatorial Pacific climate: perspectives from observations, simulations, and theories. npj Clim. Atmos. Sci. 5, 82 (2022). This is a comprehensive review article on the cause of recent tropical Pacific SST pattern change based on observations, model simulations and theory.

    Article 

    Google Scholar
     

  • Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Article 

    Google Scholar
     

  • Heede, U., Fedorov, A. & Burls, N. A stronger versus weaker Walker: understanding model differences in fast and slow tropical Pacific responses to global warming. Clim. Dyn. 57, 2505–2522 (2021).

    Article 

    Google Scholar
     

  • Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, L03205 (2004).

    Article 

    Google Scholar
     

  • Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1, 360–364 (2011).

    Article 

    Google Scholar
     

  • Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I. & Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Change 3, 649–653 (2013).

    Article 

    Google Scholar
     

  • Drijfhout, S. S. et al. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett. 41, 7868–7874 (2014).

    Article 

    Google Scholar
     

  • Armour, K. Energy budget constraints on climate sensitivity in light of inconstant climate feedbacks. Nat. Clim. Change 7, 331–335 (2017).

    Article 

    Google Scholar
     

  • Hedemann, C., Mauritsen, T., Jungclaus, J. & Marotzke, J. The subtle origins of surface-warming hiatuses. Nat. Clim. Change 7, 336–339 (2017).

    Article 

    Google Scholar
     

  • Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006). This study provides the theoretical argument constraining global mass flux change under global warming using the atmospheric hydrological budget.

    Article 

    Google Scholar
     

  • Li, R. L., Studholme, J. H., Fedorov, A. V. & Storelvmo, T. Precipitation efficiency constraint on climate change. Nat. Clim. Change 12, 642–648 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4434 (2007).

    Article 

    Google Scholar
     

  • Collins, M. et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 3, 391–397 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chadwick, R., Boutle, I. & Martin, G. Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J. Clim. 26, 3803–3822 (2013).

    Article 

    Google Scholar
     

  • Vecchi, G. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Merlis, T. M. & Schneider, T. Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. J. Clim. 24, 4757–4768 (2011).

    Article 

    Google Scholar
     

  • Sandeep, S. et al. Pacific Walker circulation variability in coupled and uncoupled climate models. Clim. Dyn. 43, 103–117 (2014).

    Article 

    Google Scholar
     

  • Shrestha, S. & Soden, B. J. Anthropogenic weakening of the atmospheric circulation during the satellite era. Geophys. Res. Lett. 50, e2023GL104784 (2023).

    Article 

    Google Scholar
     

  • Watanabe, M., Iwakiri, T., Dong, Y. & Kang, S. M. Two competing drivers of the recent Walker circulation trend. Geophys. Res. Lett. 50, e2023GL105332 (2023).

    Article 

    Google Scholar
     

  • Chou, C. & Neelin, J. D. Mechanisms of global warming impacts on regional tropical precipitation. J. Clim. 17, 2688–2701 (2004).

    Article 

    Google Scholar
     

  • Wills, R. C., Levine, X. J. & Schneider, T. Local energetic constraints on Walker circulation strength. J. Atmos. Sci. 74, 1907–1922 (2017).

    Article 

    Google Scholar
     

  • Duffy, M. L. & O’Gorman, P. A. Intermodel spread in Walker circulation responses linked to spread in moist stability and radiation responses. J. Geophys. Res. 128, e2022JD037382 (2023).

    Article 

    Google Scholar
     

  • Fan, C. S. & Dommenget, D. The weakening of the tropical circulation is caused by the lifting of the tropopause height. Clim. Dyn. https://doi.org/10.1007/s00382-023-06909-1 (2023).

    Article 

    Google Scholar
     

  • Kang, S. M., Shin, Y., Kim, H., Xie, S.-P. & Hu, S. Disentangling the mechanisms of equatorial Pacific climate change. Sci. Adv. 9, eadf5059 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeevanjee, N. Three rules for the decrease of tropical convection with global warming. J. Adv. Model. Earth Sys. 14, e2022MS003285 (2022).

    Article 

    Google Scholar
     

  • Knutson, T. R. & Manabe, S. Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean-atmosphere model. J. Clim. 8, 2181–2199 (1995). This study is a pioneering work that explored the climate response to an abrupt CO2 quadrupling and proposed differential evaporative damping as a mechanism that weakens the equatorial Pacific zonal SST gradient.

    Article 

    Google Scholar
     

  • Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

    Article 

    Google Scholar
     

  • Heede, U. K., Fedorov, A. V. & Burls, N. J. Time scales and mechanisms for the tropical Pacific response to global warming: a tug of war between the ocean thermostat and weaker Walker. J. Clim. 33, 6101–6118 (2020).

    Article 

    Google Scholar
     

  • Fu, M. & Fedorov, A. The role of Bjerknes and shortwave feedbacks in the tropical Pacific SST response to global warming. Geophys. Res. Lett. 50, e2023GL105061 (2023).

    Article 

    Google Scholar
     

  • Kang, S. M. et al. The response of the ITCZ to extratropical thermal forcing: idealized slab-ocean experiments with a GCM. J. Clim. 21, 3521–3532 (2008).

    Article 

    Google Scholar
     

  • Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45–53 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, S. M. Extratropical influence on the tropical rainfall distribution. Curr. Clim. Change Rep. 6, 24–36 (2020).

    Article 

    Google Scholar
     

  • Kang, S. M. et al. Walker circulation response to extratropical radiative forcing. Sci. Adv. 6, eabd3021 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsiao, W. et al. The role of clouds in shaping tropical Pacific response pattern to extratropical thermal forcing. Geophys. Res. Lett. 49, e2022GL098023 (2022).

    Article 

    Google Scholar
     

  • Tseng, H.-Y. et al. Fast and slow responses of the tropical Pacific to radiative forcing in northern high latitudes. J. Clim. 36, 5337–5349 (2023).

    Article 

    Google Scholar
     

  • Kang, S. M., Park, K., Hwang, Y.-T. & Hsiao, W.-T. Contrasting tropical climate response pattern to localized thermal forcing over different ocean basins. Geophys. Res. Lett. 45, 12544–12552 (2018).

    Article 

    Google Scholar
     

  • Hu, S. & Fedorov, A. V. Cross-equatorial winds control El Niño diversity and change. Nat. Clim. Change 8, 798–802 (2018).

    Article 

    Google Scholar
     

  • Donohoe, A. et al. The relationship between ITCZ location and cross-equatorial atmospheric heat transport: from the seasonal cycle to the Last Glacial Maximum. J. Clim. 26, 3597–3618 (2013).

    Article 

    Google Scholar
     

  • Kang, S. M. et al. Global impacts of recent Southern Ocean cooling. Proc. Natl Acad. Sci. USA 120, e2300881120 (2023). This study demonstrates the recent Southern Ocean cooling impact on the eastern tropical Pacific SST cooling using pacemaker experiments.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, Y. et al. Two-way teleconnections between the Southern Ocean and the tropical Pacific via a dynamic feedback. J. Clim. 35, 2667–2682 (2022).

    Article 

    Google Scholar
     

  • Li, X. et al. Tropical teleconnection impacts on Antarctic climate changes. Nat. Rev. Earth Environ. 2, 680–698 (2021).

    Article 

    Google Scholar
     

  • Kim, H., Kang, S. M., Kay, J. E. & Xie, S.-P. Subtropical clouds key to Southern Ocean teleconnections to the tropical Pacific. Proc. Nat. Acad. Sci. USA 34, e2200514119 (2022).

    Article 

    Google Scholar
     

  • Allen, R. J., Evan, A. T. & Booth, B. B. B. Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J. Clim. 28, 8219–8246 (2015).

    Article 

    Google Scholar
     

  • Hwang, Y. ‐T., Frierson, D. M. W. & Kang, S. M. Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys. Res. Lett. 40, 2845–2850 (2013).

    Article 

    Google Scholar
     

  • Hwang, Y.-T., Xie, S.-P., Chen, P.-J., Tseng, H.-Y. & Deser, C. Contribution of anthropogenic aerosols to persistent La Niña-like conditions in the early 21st century. Proc. Nat. Acad. Sci. USA 121, e2315124121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, D. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nat. Clim. Change 6, 936–940 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Takahashi, C. & Watanabe, M. Pacific trade winds accelerated by aerosol forcing over the past two decades. Nat. Clim. Change 6, 768–772 (2016).

    Article 

    Google Scholar
     

  • Heede, U. K. & Fedorov, A. V. Eastern equatorial Pacific warming delayed by aerosols and thermostat response to CO2 increase. Nat. Clim. Change 11, 696–703 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kang, S. M. et al. Zonal mean and shift modes of historical climate response to evolving aerosol distribution. Sci. Bull. 66, 2405–2411 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Deser, C. et al. Isolating the evolving contributions of anthropogenic aerosols and greenhouse gases: a new CESM1 large ensemble community resource. J. Clim. 33, 7835–7858 (2020).

    Article 

    Google Scholar
     

  • Diao, C., Xu, Y. & Xie, S.-P. Anthropogenic aerosol effects on tropospheric circulation and sea surface temperature (1980–2020): separating the role of zonally asymmetric forcings. Atmos. Chem. Phys. 21, 18499–18518 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).

    Article 

    Google Scholar
     

  • Jin, F.-F. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño Southern Oscillation. Science 274, 76–78 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Xie, S.-P. & Philander, S. G. H. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A, 340–350 (1994).

    Article 

    Google Scholar
     

  • Planton, Y. Y. et al. Evaluating climate models with the CLIVAR 2020 ENSO metrics package. Bull. Am. Meteor. Soc. 102, E193–E217 (2021).

    Article 

    Google Scholar
     

  • Clement, A., Seager, R., Cane, M. & Zebiak, S. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996). This study proposed the ocean thermostat mechanism that increases the equatorial Pacific zonal SST gradient to uniform thermal forcing using a simple coupled model.

    Article 

    Google Scholar
     

  • Sun, D.-Z. & Liu, Z. Dynamic ocean–atmosphere coupling: a thermostat for the tropics. Science 272, 1148–1150 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Luo, Y., Lu, J., Liu, F. & Garuba, O. The role of ocean dynamical thermostat in delaying the El Niño–like response over the equatorial Pacific to climate warming. J. Clim. 30, 2811–2827 (2017).

    Article 

    Google Scholar
     

  • Zeller, M., McGregor, S., van Sebille, E., Capotondi, A. & Spence, P. Subtropical-tropical pathways of spiciness anomalies and their impact on equatorial Pacific temperature. Clim. Dyn. 56, 1131–1144 (2021).

    Article 

    Google Scholar
     

  • Liu, Z. Y. The role of ocean in the response of tropical climatology to global warming: the west–east SST contrast. J. Clim. 11, 864–875 (1998).

    Article 

    Google Scholar
     

  • Kleeman, R., McCreary, J. P. & Klinger, B. A. A mechanism for generation ENSO decadal variability. Geophys. Res. Lett. 26, 2038–2049 (1999).

    Article 

    Google Scholar
     

  • Gu, D. & Philander, S. G. H. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 17, 553–564 (1997).


    Google Scholar
     

  • Imada, Y., Tatebe, H., Watanabe, M., Ishii, M. & Kimoto, M. South Pacific influence on the termination of El Niño in 2014. Sci. Rep. 6, 30341 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kilpatrick, T., Schneider, N. & Di Lorenzo, E. Generation of low-frequency spiciness variability in the thermocline. J. Phys. Oceanogr. 41, 365–377 (2011).

    Article 

    Google Scholar
     

  • England, M. R., Polvani, L. M., Sun, L. & Deser, C. Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci. 13, 275–281 (2020).

    Article 
    CAS 

    Google Scholar
     

  • McPhaden, M. & Zhang, D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415, 603–608 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thomas, M. D. & Fedorov, A. V. The eastern subtropical Pacific origin of the equatorial cold bias in climate models: a Lagrangian perspective. J. Clim. 30, 5885–5900 (2017).

    Article 

    Google Scholar
     

  • Wang, D. & Cane, M. Pacific shallow meridional overturning circulation in a warming climate. J. Clim. 24, 6424–6439 (2011).

    Article 

    Google Scholar
     

  • Graffino, G., Farneti, R. & Kucharski, F. Low-frequency variability of the Pacific subtropical cells as reproduced by coupled models and ocean reanalyses. Clim. Dyn. 56, 3231–3254 (2021).

    Article 

    Google Scholar
     

  • Stellema, A., Sen Gupta, A., Taschetto, A. S. & Feng, M. Pacific equatorial undercurrent: mean state, sources, and future changes across models. Front. Clim. 4, 933091 (2022).

    Article 

    Google Scholar
     

  • Stuecker, M. F. et al. Strong remote control of future equatorial warming by off-equatorial forcing. Nat. Clim. Change 10, 124–129 (2020).

    Article 

    Google Scholar
     

  • Cai, W. et al. Pantropical climate interactions. Science 363, eeav4236 (2019). This is a comprehensive review paper on the tropical basin coupling and its role in the tropical Pacific climate variability.

    Article 

    Google Scholar
     

  • McGregor, S., Stuecker, M. F., Kajtar, J. B., England, M. H. & Collins, M. Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Clim. Change 8, 493–498 (2018).

    Article 

    Google Scholar
     

  • Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 6, 275–279 (2016).

    Article 

    Google Scholar
     

  • Kajtar, J. B., Santoso, A., McGregor, S., England, M. H. & Baillie, Z. Model under-representation of decadal Pacific trade wind trends and its link to tropical Atlantic bias. Clim. Dyn. 50, 1471–1484 (2017).

    Article 

    Google Scholar
     

  • Ferster, B. S., Fedorov, A. V., Guilyardi, E. & Mignot, J. The effect of Indian Ocean temperature on the Pacific trade winds and ENSO. Geophys. Res. Lett. 50, e2023GL103230 (2023).

    Article 

    Google Scholar
     

  • Dhame, S., Taschetto, A. S., Santoso, A. & Meissner, K. J. Indian Ocean warming modulates global atmospheric circulation trends. Clim. Dyn. 55, 2053–2073 (2020).

    Article 

    Google Scholar
     

  • Luo, J.-J., Sasaki, W. & Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fedorov, A. V. & Philander, S. G. Is El Niño changing? Science 288, 1997–2002 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Capotondi, A. et al. Understanding ENSO diversity. Bull. Am. Meteor. Soc. 96, 921–938 (2015).

    Article 

    Google Scholar
     

  • Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018). This paper reviews the physical processes involved in El Niño–Southern Oscillation and provides a synopsis of understanding of the ENSO complexity.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, F.-F., An, S.-I., Timmermann, A. & Zhao, J. Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett. 30, 1120 (2003).

    Article 

    Google Scholar
     

  • Sun, D.-Z. & Zhang, T. A regulatory effect of ENSO on the time-mean thermal stratification of the equatorial upper ocean. Geophys. Res. Lett. 33, L07710 (2006).

    Article 
    MathSciNet 

    Google Scholar
     

  • Kohyama, T. & Hartmann, D. L. Nonlinear ENSO warming suppression (NEWS). J. Clim. 30, 4227–4251 (2017).

    Article 

    Google Scholar
     

  • Hayashi, M., Jin, F.-F. & Stuecker, M. F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 11, 4230 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article 

    Google Scholar
     

  • Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502, 541–545 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, P. & Xie, S. P. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 8, 922–926 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yun, K. S. et al. Increasing ENSO–rainfall variability due to changes in future tropical temperature–rainfall relationship. Commun. Earth Environ. 2, 43 (2021).

    Article 

    Google Scholar
     

  • Watanabe, M., Kamae, Y. & Kimoto, M. Robust increase of the equatorial Pacific rainfall and its variability in a warmed climate. Geophys. Res. Lett. 41, 3227–3232 (2014).

    Article 

    Google Scholar
     

  • Kim, H., Timmermann, A., Lee, S.-S. & Schloesser, F. Rainfall and salinity effects on future Pacific climate change. Earth’s Future 11, e2022EF003457 (2023).

    Article 

    Google Scholar
     

  • Ham, Y. G. et al. Anthropogenic fingerprints in daily precipitation revealed by deep learning. Nature 622, 301–307 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heede, U. K. & Fedorov, A. V. Colder eastern equatorial Pacific and stronger Walker circulation in the early 21st century: separating the forced response to global warming from natural variability. Geophys. Res. Lett. 50, e2022GL101020 (2023).

    Article 

    Google Scholar
     

  • Hartmann, D. The Antarctic ozone hole and the pattern effect on climate sensitivity. Proc. Natl Acad. Soc. USA 119, e2207889119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L., Delworth, T. L., Cooke, W. & Yang, X. Natural variability of Southern Ocean convection as a driver of observed climate trends. Nat. Clim. Change 9, 59–65 (2019).

    Article 

    Google Scholar
     

  • Dong, Y., Pauling, A. G., Sadai, S. & Armour, K. C. Antarctic ice-sheet meltwater reduces transient warming and climate sensitivity through the sea-surface temperature pattern effect. Geophys. Res. Lett. 49, e2022GL101249 (2022).

    Article 

    Google Scholar
     

  • Zhang, Y. G., Pagani, M. & Liu, Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science 344, 84–87 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fedorov, A., Burls, N. J., Lawrence, K. T. & Peterson, L. C. Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nat. Geosci. 8, 975–980 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto-Bliesner, B. L. Pliocene warmth consistent with greenhouse gas forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    Article 

    Google Scholar
     

  • Wycech, J. B., Gill, E., Rajagopalan, B., Marchitto, T. M. Jr & Molnar, P. H. Multiproxy reduced-dimension reconstruction of Pliocene equatorial Pacific sea surface temperatures. Paleoceanogr. Paleoclim. 35, e2019PA003685 (2020).

    Article 

    Google Scholar
     

  • Zhong, S., Ying, J. & Collins, M. Sources of uncertainty in the time of emergence of tropical Pacific climate change signal: role of internal variability. J. Clim. 36, 2535–2549 (2023).

    Article 

    Google Scholar
     

  • Falster, G., Konecky, B., Coats, S. & Stevenson, S. Forced changes in the Pacific Walker circulation over the past millennium. Nature 622, 93–100 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yim, B. Y., Yeh, S.-W., Song, H.-J., Dommenget, D. & Sohn, B. J. Land-sea thermal contrast determines the trend of Walker circulation simulated in atmospheric general circulation models. Geophys. Res. Lett. 44, 5854–586 (2017).

    Article 

    Google Scholar
     

  • Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schloesser, F., Friedrich, T., Timmermann, A., DeConto, R. M. & Polland, D. Antarctic iceberg impacts on future Southern Hemisphere climate. Nat. Clim. Change 9, 672–677 (2019).

    Article 

    Google Scholar
     

  • Li, Q., England, M. H., Hogg, A. M., Rintoul, S. R. & Morrison, A. K. Abyssal ocean overturning slowdown and warming driven by Antarctic meltwater. Nature 615, 841–847 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, Y., Hu, S. & Deser, C. Critical role of biomass burning aerosols in enhanced historical Indian Ocean warming. Nat. Commun. 14, 3508 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamaguchi, R. et al. Persistent ocean anomalies as a response to Northern Hemisphere heating induced by biomass burning variability. J. Clim. 36, 8225–8241 (2023).

    Article 

    Google Scholar
     

  • Ying, J., Huang, P., Lian, T. & Tan, H. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models. Clim. Dyn. 52, 1805–1818 (2019).

    Article 

    Google Scholar
     

  • Bayr, T. et al. Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Clim. Dyn. 53, 155–172 (2019).

    Article 

    Google Scholar
     

  • Wengel, C. et al. Future high-resolution El Niño/Southern Oscillation dynamics. Nat. Clim. Change 11, 758–765 (2021).

    Article 

    Google Scholar
     

  • Yeager, S. G. et al. Reduced Southern Ocean warming enhances global skill and signal-to-noise in an eddy-resolving decadal prediction system. npj Clim. Atmos. Sci. 6, 107 (2023).

    Article 

    Google Scholar
     

  • Slingo, J. et al. Ambitious partnership needed for reliable climate prediction. Nat. Clim. Change 12, 499–503 (2022).

    Article 

    Google Scholar
     

  • Huang, P., Xie, S.-P., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Andrews, T., Gregory, J. M. & Webb, M. J. The dependence of radiative forcing and feedback on evolving patterns of surface temperature change in climate models. J. Clim. 28, 1630–1648 (2015).

    Article 

    Google Scholar
     

  • Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Douville, H. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1055–1210 (Cambridge Univ. Press, 2021).

  • Lindzen, R. S. & Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 44, 2418–2436 (1987).

    Article 

    Google Scholar
     

  • Karnauskas, K. B. A simple coupled model of the wind–evaporation–SST feedback with a role for stability. J. Clim. 35, 2149–2160 (2022).

    Article 

    Google Scholar
     

  • Yang, L., Xie, S.-P., Shen, S. S. P., Liu, J. & Hwang, Y. Low cloud–SST feedback over the subtropical northeast Pacific and the remote effect on ENSO variability. J. Clim. 36, 441–452 (2022).

    Article 

    Google Scholar
     

  • Timmermann, A., McGregor, S. & Jin, F.-F. Wind effects on past and future regional sea level trends in the southern Indo-Pacific. J. Clim. 23, 4429–4437 (2010).

    Article 

    Google Scholar
     

  • Chalmers, J., Kay, J. E., Middlemas, E. A., Maroon, E. A. & DiNezio, P. Does disabling cloud radiative feedbacks change spatial patterns of surface greenhouse warming and cooling? J. Clim. 35, 1787–1807 (2022).

    Article 

    Google Scholar
     

  • Hartmann, D. L., Moy, L. A. & Fu, Q. Tropical convection and the energy balance at the top of the atmosphere. J. Clim. 14, 4495–4511 (2001).

    Article 

    Google Scholar
     

  • Yoshimori, M., Lambert, F. H., Webb, M. J. & Andrews, T. Fixed anvil temperature feedback – positive, zero or negative? J. Clim. 33, 2719–2739 (2020).

    Article 

    Google Scholar
     

  • Clement, A. C., Burgman, R. & Norris, J. R. Observational and model evidence for positive low-level cloud feedback. Science 325, 460–464 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Myers, T. A. et al. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Clim. Change 11, 501–507 (2021).

    Article 

    Google Scholar
     

  • Ying, J., Huang, P. & Huang, R. Evaluating the formation mechanisms of the equatorial Pacific SST warming pattern in CMIP5 models. Adv. Atmos. Sci. 33, 433–441 (2016).

    Article 

    Google Scholar
     

  • Erfani, E. & Burls, N. J. The strength of low-cloud feedbacks and tropical climate: a CESM sensitivity study. J. Clim. 32, 2497–2516 (2019).

    Article 

    Google Scholar
     

  • Park, C., Kang, S. M., Stuecker, M. F. & Jin, F.-F. Distinct surface warming response over the western and eastern equatorial Pacific to radiative forcing. Geophys. Res. Lett. 49, e2021GL095829 (2022).

    Article 

    Google Scholar
     



  • Source link