• Young, R. J. & Lovell, P. A. Introduction to Polymers (CRC Press, 2011).

  • Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, M., Hu, J. & Dickey, M. D. Tough ionogels: synthesis, toughening mechanisms, and mechanical properties─a perspective. JACS Au 2, 2645–2657 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M., Hu, J. & Dickey, M. D. Emerging applications of tough ionogels. NPG Asia Mater. 15, 66 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, M. et al. Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 21, 359–365 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan, H. & Gong, J. P. Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules 53, 2769–2782 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ueki, T. & Watanabe, M. Polymers in ionic liquids: dawn of neoteric solvents and innovative materials. Bull. Chem. Soc. Jpn 85, 33–50 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X., Liu, J., Lin, S. & Zhao, X. Hydrogel machines. Mater. Today 36, 102–124 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double‐network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J., Zhang, G., Shi, M. & Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374, 212–216 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamiyama, Y. et al. Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Sci. Adv. 8, eadd0226 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Corkhill, P. H., Trevett, A. S. & Tighe, B. J. The potential of hydrogels as synthetic articular cartilage. Proc. Inst. Mech. Eng. H 204, 147–155 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, Z., Liu, H. & Jiang, L. Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Mater. Horiz. 7, 912–918 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yu, L. et al. Highly tough, Li‐metal compatible organic–inorganic double‐network solvate ionogel. Adv. Energy Mater. 9, 1900257 (2019).

    Article 

    Google Scholar
     

  • Ren, Y. et al. Ionic liquid–based click-ionogels. Sci. Adv. 5, eaax0648 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallagher, A. J. et al. Dynamic tensile properties of human skin. In 2012 IRCOBI Conference Proc. 494–502 (International Research Council on the Biomechanics of Injury, 2012).

  • Sato, K. et al. Phase‐separation‐induced anomalous stiffening, toughening, and self‐healing of polyacrylamide gels. Adv. Mater. 27, 6990–6998 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H. J. et al. Tough physical double‐network hydrogels based on amphiphilic triblock copolymers. Adv. Mater. 28, 4884–4890 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joodaki, H. & Panzer, M. B. Skin mechanical properties and modeling: a review. Proc. Inst. Mech. Eng. H 232, 323–343 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, Y. J. et al. Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network. Chem. Mater. 31, 1430–1440 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Weng, D. et al. Polymeric complex-based transparent and healable ionogels with high mechanical strength and ionic conductivity as reliable strain sensors. ACS Appl. Mater. Interfaces 12, 57477–57485 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X., Du, C., Du, M., Zheng, Q. & Wu, Z. L. Kinetic insights into glassy hydrogels with hydrogen bond complexes as the cross-links. Mater. Today Phys. 15, 100230 (2020).

    Article 

    Google Scholar
     

  • Hu, X., Vatankhah‐Varnoosfaderani, M., Zhou, J., Li, Q. & Sheiko, S. S. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv. Mater. 27, 6899–6905 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yarger, J. L., Cherry, B. R. & van Der Vaart, A. Uncovering the structure–function relationship in spider silk. Nat. Rev. Mater. 3, 18008 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, Y. et al. Enhancing impact resistance of polymer blends via self-assembled nanoscale interfacial structures. Macromolecules 51, 3897–3910 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Polystyrene glasses under compression: ductile and brittle responses. ACS Macro Lett. 4, 1072–1076 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, H. et al. Biobased plasticizers from tartaric acid: synthesis and effect of alkyl chain length on the properties of poly(vinyl chloride). ACS Omega 6, 13161–13169 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pita, V. J. R. R., Sampaio, E. E. M. & Monteiro, E. E. C. Mechanical properties evaluation of PVC/plasticizers and PVC/thermoplastic polyurethane blends from extrusion processing. Polym. Test. 21, 545–550 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Huang, Q., Wan, C., Loveridge, M. & Bhagat, R. Partially neutralized polyacrylic acid/poly(vinyl alcohol) blends as effective binders for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Energy Mater. 1, 6890–6898 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Eisenberg, A., Yokoyama, T. & Sambalido, E. Dehydration kinetics and glass transition of poly(acrylic acid). J. Polym. Sci. 7, 1717–1728 (1969).

    Article 
    CAS 

    Google Scholar
     

  • Song, P. A., Yu, Y., Wu, Q. & Fu, S. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending. Nanoscale Res. Lett. 7, 355 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Max, J.-J. & Chapados, C. Infrared spectroscopy of aqueous carboxylic acids: comparison between different acids and their salts. J. Phys. Chem. A 108, 3324–3337 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Parikh, S. J., Mukome, F. N. D. & Zhang, X. ATR–FTIR spectroscopic evidence for biomolecular phosphorus and carboxyl groups facilitating bacterial adhesion to iron oxides. Colloids Surf. B Biointerfaces 119, 38–46 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rungrodnimitchai, S. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. Sci. World J. 2014, 634837 (2014).

    Article 

    Google Scholar
     

  • Qu, J. et al. Synergistic effects between phosphonium‐alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv. Mater. 27, 4767–4774 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swatloski, R. P., Spear, S. K., Holbrey, J. D. & Rogers, R. D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link