• Choi, C. et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat. Catal. 3, 804–812 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mefford, J. T. et al. Correlative operando microscopy of oxygen evolution electrocatalysts. Nature 593, 67–73 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Molinari, A. et al. Hybrid supercapacitors for reversible control of magnetism. Nat. Commun. 8, 15339 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Egbe, D. I. O., Jahanbani Ghahfarokhi, A., Nait Amar, M. & Torsæter, O. Application of low-salinity waterflooding in carbonate cores: a geochemical modeling study. Nat. Resour. Res. 30, 519–542 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. W. et al. Characterizing the influence of water on charging and layering at electrified ionic-liquid/solid interfaces. Adv. Mater. Interfaces 2, 1500159 (2015).

    Article 

    Google Scholar
     

  • Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, C. Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Favaro, M. et al. Unravelling the electrochemical double layer by direct probing of the solid/liquid interface. Nat. Commun. 7, 12695 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Su, H. et al. Dynamic evolution of solid–liquid electrochemical interfaces over single-atom active sites. J. Am. Chem. Soc. 142, 12306–12313 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bie, Y. Q. et al. Vibrational spectroscopy at electrolyte/electrode interfaces with graphene gratings. Nat. Commun. 6, 7593 (2015).

    Article 
    ADS 

    Google Scholar
     

  • He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, H. et al. Tailoring atomic layer growth at the liquid-metal interface. Nat. Commun. 9, 4889 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Sun, X. et al. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607, 708–713 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Monai, M. et al. Restructuring of titanium oxide overlayers over nickel nanoparticles during catalysis. Science 380, 644–651 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Defect-mediated ripening of core-shell nanostructures. Nat. Commun. 13, 2211 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Arán-Ais, R. M. et al. Imaging electrochemically synthesized Cu2O cubes and their morphological evolution under conditions relevant to CO2 electroreduction. Nat. Commun. 11, 3489 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wang, X. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vavra, J., Shen, T. H., Stoian, D., Tileli, V. & Buonsanti, R. Real‐time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. Int. Ed. 133, 1367–1374 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Electrochemically scrambled nanocrystals are catalytically active for CO2-to-multicarbons. Proc. Natl Acad. Sci. 117, 9194–9201 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liao, Y. Practical electron microscopy and database. https://www.globalsino.com/EM/ (2006).

  • Swift, M. W., Swift, J. W. & Qi, Y. Modeling the electrical double layer at solid-state electrochemical interfaces. Nat. Comput. Sci. 1, 212–220 (2021).

    Article 

    Google Scholar
     

  • Vavra, J. et al. Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction. Nat. Catal. 7, 89–97 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pike, R. D. Structure and bonding in copper(I) carbonyl and cyanide complexes. Organometallics 31, 7647–7660 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Qi, D., Behrens, H., Lazarov, M. & Weyer, S. Cu isotope fractionation during reduction processes in aqueous systems: evidences from electrochemical deposition. Contrib. Mineral. Petrol. 174, 37 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Peng, X. et al. Identification of a quasi-liquid phase at solid–liquid interface. Nat. Commun. 13, 3601 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jin, M. et al. Shape‐controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem. Int. Ed. 50, 10560–10564 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Nakamura, R., Ishimaru, M., Yasuda, H. & Nakajima, H. Atomic rearrangements in amorphous Al2O3 under electron-beam irradiation. J. Appl. Phys. 113, 064312 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Jenc̆ic, Bench, M. W., Robertson, I. M. & Kirk, M. A. Electron beam induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974–982 (1995).

    Article 
    ADS 

    Google Scholar
     

  • Wang, W. et al. Solid–liquid–gas reaction accelerated by gas molecule tunnelling-like effect. Nat. Mater. 21, 859–863 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhou, S. et al. Visualizing interfacial collective reaction behaviour of Li–S batteries. Nature 621, 75–81 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiao, H., Goddard, W. A. III, Cheng, T. & Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl Acad. Sci. 114, 6685–6688 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link