• Jansen, R. Silicon spintronics. Nat. Mater. 11, 400–408 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020). 

    Article 
    CAS 

    Google Scholar
     

  • Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975).

    Article 
    ADS 

    Google Scholar
     

  • Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

    Article 

    Google Scholar
     

  • Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lu, H., Vardeny, Z. V. & Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 6, 470–485 (2022).

    Article 

    Google Scholar
     

  • Mishra, S. et al. Length-dependent electron spin polarization in oligopeptides and DNA. J. Phys. Chem. C 124, 10776–10782 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lu, H. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 142, 13030–13040 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Shpatz Dayan, A., Wierzbowska, M. & Etgar, L. Ruddlesden–Popper 2D chiral perovskite-based solar cells. Small Struct. 3, 2200051 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Q. et al. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat. Commun. 14, 7179 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Alberi, K. et al. Design and demonstration of AlxIn1−xP multiple quantum well light-emitting diodes. J. Phys. D Appl. Phys. 54, 375501 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Giba, A. E. et al. Spin injection and relaxation in p-doped (In,Ga)As/GaAs quantum-dot spin light-emitting diodes at zero magnetic field. Phys. Rev. Appl. 14, 034017 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Etou, K. et al. Room-temperature spin-transport properties in an In0.5Ga0.5As quantum dot spin-polarized light-emitting diode. Phys. Rev. Appl. 16, 014034 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Green, M. Solution routes to III–V semiconductor quantum dots. Curr. Opin. Solid State Mater. Sci. 6, 355–363 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Weisbuch, C. & Vinter, B. Quantum Semiconductor Structures: Fundamentals and Applications (Elsevier, 2014).

  • Jonker, B. T. et al. Robust electrical spin injection into a semiconductor heterostructure. Phys. Rev. B 62, 8180–8183 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nguyen, T. D., Ehrenfreund, E. & Vardeny, Z. V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 337, 204–209 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Etou, K. et al. Efficient room-temperature operation of a quantum dot spin-polarized light-emitting diode under high-bias conditions. Phys. Rev. Appl. 19, 024055 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dankert, A., Dulal, R. S. & Dash, S. P. Efficient spin injection into silicon and the role of the Schottky barrier. Sci. Rep. 3, 3196 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lu, Y. et al. MgO thickness dependence of spin injection efficiency in spin-light emitting diodes. Appl. Phys. Lett. 93, 152102 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Tito Patricio, M. A. et al. Spin relaxation of holes in In0.53Ga0.47As/InP quantum wells. Physica E 131, 114700 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Iba, S. et al. Spin accumulation and spin lifetime in p-type germanium at room temperature. Appl. Phys. Express 5, 053004 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Nonnenmacher, M., O’Boyle, M. P. & Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 58, 2921–2923 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Dzhioev, R. I. et al. Low-temperature spin relaxation in n-type GaAs. Phys. Rev. B 66, 245204 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Spin-optoelectronic devices based on hybrid organic-inorganic trihalide perovskites. Nat. Commun. 10, 129 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rashba, E. I. Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nishizawa, N., Nishibayashi, K. & Munekata, H. Pure circular polarization electroluminescence at room temperature with spin-polarized light-emitting diodes. Proc. Natl Acad. Sci. 114, 1793–1788 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Liang, S. H. et al. Large and robust electrical spin injection into GaAs at zero magnetic field using an ultrathin CoFeB/MgO injector. Phys. Rev. B 90, 085310 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cadiz, F. et al. Electrical initialization of electron and nuclear spins in a single quantum dot at zero magnetic field. Nano Lett. 18, 2381–2386 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dainone, P. A. et al. Controlling the helicity of light by electrical magnetization switching. Nature 627, 783–788 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhao, K. et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ‘122’ iron-based superconductors. Nat. Commun. 4, 1442 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kunnen, B. et al. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J. Biophotonics 8, 317–323 (2015).

    Article 

    Google Scholar
     

  • Asshoff, P., Merz, A., Kalt, H. & Hetterich, M. A spintronic source of circularly polarized single photons. Appl. Phys. Lett. 98, 112106 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Furlan, F. et al. Chiral materials and mechanisms for circularly polarized light-emitting diodes. Nat. Photonics, https://doi.org/10.1038/s41566-024-01408-z (2024).

    Article 

    Google Scholar
     

  • Jang, G. et al. Core–shell perovskite quantum dots for highly selective room-temperature spin light-emitting diodes. Adv. Mater. 36, 2309335 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. H. et al. Tungsten-doped zinc oxide and indium–zinc oxide films as high-performance electron-transport layers in N–I–P perovskite solar cells. Polymers 12, 737 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, T. et al. Stable and efficient 3D-2D perovskite-perovskite planar heterojunction solar cell without organic hole transport layer. Joule 2, 2706–2721 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Auer-Berger, M. et al. All-solution-processed multilayer polymer/dendrimer light emitting diodes. Org. Electron. 35, 164–170 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kikukawa, A., Hosaka, S. & Imura, R. Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy. Appl. Phys. Lett. 66, 3510–3512 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, C.-S., Moutinho, H. R., Friedman, D. J., Geisz, J. F. & Al-Jassim, M. M. Measurement of built-in electrical potential in III–V solar cells by scanning Kelvin probe microscopy. J. Appl. Phys. 93, 10035–10040 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, C.-S. et al. Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, C.-S. et al. Effect of window-layer materials on p-n junction location in Cu(In,Ga)Se2 solar cells. IEEE J. Photovolt. 9, 308–312 (2019).

    Article 

    Google Scholar
     

  • Jiang, C.-S. et al. Electrical potential investigation of reversible metastability and irreversible degradation of CdTe solar cells. Sol. Energy Mater. Sol. Cells 238, 111610 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Southwick, R. G., Sup, A., Jain, A. & Knowlton, W. B. An interactive simulation tool for complex multilayer dielectric devices. IEEE Trans. Device Mater. Reliab. 11, 236–243 (2011).

    Article 

    Google Scholar
     

  • Korn, T. Time-resolved studies of electron and hole spin dynamics in modulation-doped GaAs/AlGaAs quantum wells. Phys. Rep. 494, 415–445 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zakharchenya, B. P. & Meier, F. Optical Orientation (North-Holland, 1984).

  • Wang, Q. et al. Spin quantum dot light-emitting diodes enabled by 2D chiral perovskite with spin-dependent carrier transport. Adv. Mater. 36, 2305604 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C.-H. et al. In situ formed perovskite nanocrystal films toward efficient circularly polarized electroluminescence. Adv. Funct. Mater. 34, 2310500 (2023).

    Article 

    Google Scholar
     

  • Ye, C., Jiang, J., Zou, S., Mi, W. & Xiao, Y. Core–shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J. Am. Chem. Soc. 144, 9707–9714 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yang, C.-H., Xiao, S.-B., Xiao, H., Xu, L.-J. & Chen, Z.-N. Efficient red-emissive circularly polarized electroluminescence enabled by quasi-2D perovskite with chiral spacer cation. ACS Nano 17, 7830–7836 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Mustaqeem, M. et al. Solution-processed and room-temperature spin light-emitting diode based on quantum dots/chiral metal-organic framework heterostructure. Adv. Funct. Mater. 33, 2213587 (2023).

    Article 
    CAS 

    Google Scholar
     



  • Source link