• Sofroniew, M. V. Dissecting spinal cord regeneration. Nature 557, 343–350 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Anderson, M. A. et al. Natural and targeted circuit reorganization after spinal cord injury. Nature Neurosci. 25, 1584–1596 (2022).

  • Courtine, G. & Sofroniew, M. V. Spinal cord repair: advances in biology and technology. Nat. Med. 25, 898–908 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ahuja, C. S. et al. Traumatic spinal cord injury. Nat. Rev. Dis. Primers 3, 17018 (2017).

    Article 

    Google Scholar
     

  • Rowald, A. et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat. Med. 28, 260–271 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Squair, J. W. et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature 590, 308–314 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wagner, F. B. et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563, 65–71 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kathe, C. et al. The neurons that restore walking after paralysis. Nature 611, 540–547 (2022).

  • Popovich, P. G., Wei, P. & Stokes, B. T. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J. Comp. Neurol. 377, 443–464 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Squair, J. W., Gautier, M., Sofroniew, M. V., Courtine, G. & Anderson, M. A. Engineering spinal cord repair. Curr. Opin. Biotech. 72, 48–53 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Asboth, L. et al. Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat. Neurosci. 21, 576–588 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Scheff, S. W., Rabchevsky, A. G., Fugaccia, I., Main, J. A. & Lumpp, J. E. Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J. Neurotraum. 20, 179–193 (2003).

    Article 

    Google Scholar
     

  • Dusart, I. & Schwab, M. E. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur. J. Neurosci. 6, 712–724 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience 7, giy083 (2018).

    Article 

    Google Scholar
     

  • Milich, L. M. et al. Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord. J. Exp. Med. 218, e20210040 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

    Article 

    Google Scholar
     

  • Faulkner, J. R. et al. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24, 2143–2155 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Herrmann, J. E. et al. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J. Neurosci. 28, 7231–7243 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wanner, I. B. et al. Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J. Neurosci. 33, 12870–12886 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, S. C. et al. Universal prediction of cell-cycle position using transfer learning. Genome Biol. 23, 41 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Munji, R. N. et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood–brain barrier dysfunction module. Nat. Neurosci. 22, 1892–1902 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yasuda, K. et al. Drug transporters on arachnoid barrier cells contribute to the blood–cerebrospinal fluid barrier. Drug Metab. Dispos. 41, 923–931 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dewar, D., Underhill, S. M. & Goldberg, M. P. Oligodendrocytes and ischemic brain injury. J. Cereb. Blood Flow Metabol. 23, 263–274 (2002).

    Article 

    Google Scholar
     

  • Petracca, Y. L. et al. The late and dual origin of cerebrospinal fluid-contacting neurons in the mouse spinal cord. Development 143, 880–891 (2016).

    CAS 

    Google Scholar
     

  • Vígh, B. et al. The system of cerebrospinal fluid-contacting neurons. Its supposed role in the nonsynaptic signal transmission of the brain. Histol. Histopathol. 19, 607–628 (2004).


    Google Scholar
     

  • Squair, J. W. et al. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science 381, 1338–1345 (2023).

  • Courtine, G. et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14, 69–74 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Skinnider, M. A. et al. Cell type prioritization in single-cell data. Nat. Biotechnol. 39, 30–34 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Squair, J. W., Skinnider, M. A., Gautier, M., Foster, L. J. & Courtine, G. Prioritization of cell types responsive to biological perturbations in single-cell data with Augur. Nat. Protoc. 16, 3836–3873 (2021).

  • Renthal, W. et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron 108, 128–144.e9 (2020).

  • Nguyen, M. Q., Pichon, C. E. L. & Ryba, N. Stereotyped transcriptomic transformation of somatosensory neurons in response to injury. eLife 8, e49679 (2019).

    Article 

    Google Scholar
     

  • Cajal, S. R. Y. & May, R. M. Cajal’s Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, 1991).

  • Sperry, R. W. Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl Acad. Sci. USA 50, 703–710 (1963).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cajal, S. R. Y. Degeneration and Regeneration of the Nervous System (Oxford Univ. Press, 1928).

  • Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harel, N. Y. & Strittmatter, S. M. Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?. Nat. Rev. Neurosci. 7, 603–616 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Mironova, Y. A. & Giger, R. J. Where no synapses go: gatekeepers of circuit remodeling and synaptic strength. Trends Neurosci. 36, 363–373 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lin, A. C. & Holt, C. E. Local translation and directional steering in axons. EMBO J. 26, 3729–3736 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Short, D., Masry, W. E. & Jones, P. High dose methylprednisolone in the management of acute spinal cord injury–a systematic review from a clinical perspective. Spinal Cord 38, 273–286 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Bracken, M. B. Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251, 45 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Hurlbert, R. J. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J. Neurosurg. Spine 93, 1–7 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gal-Oz, S. T. et al. ImmGen report: sexual dimorphism in the immune system transcriptome. Nat. Commun. 10, 4295 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Mattucci, S. et al. Basic biomechanics of spinal cord injury—how injuries happen in people and how animal models have informed our understanding. Clin. Biomech. 64, 58–68 (2018).

    Article 

    Google Scholar
     

  • O’Shea, T. M. et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat. Commun. 13, 5702 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schwarzschild, M. A., Cole, R. L. & Hyman, S. E. Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1-mediated transcription in striatal neurons. J. Neurosci. 17, 3455–3466 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Burda, J. E. et al. Divergent transcriptional regulation of astrocyte reactivity across disorders. Nature 606, 557–564 (2022).

  • Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Christian, C. A. et al. Endogenous positive allosteric modulation of GABAA receptors by diazepam binding inhibitor. Neuron 78, 1063–1074 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Chung, K. & Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods 10, 508–513 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Olsson, A.-K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling? in control of vascular function. Nat. Rev. Mol. Cell Bio. 7, 359–371 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, C. et al. Temporal and spatial cellular and molecular pathological alterations with single-cell resolution in the adult spinal cord after injury. Signal Transduct. Target Ther. 7, 65 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wells, J. E. A., Hurlbert, R. J., Fehlings, M. G. & Yong, V. W. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 126, 1628–1637 (2003).

    Article 

    Google Scholar
     

  • Stirling, D. P. et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J. Neurosci. 24, 2182–2190 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Festoff, B. W. et al. Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J. Neurochem. 97, 1314–1326 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Rabchevsky, A. G., Fugaccia, I., Sullivan, P. G., Blades, D. A. & Scheff, S. W. Efficacy of methylprednisolone therapy for the injured rat spinal cord. J. Neurosci. Res. 68, 7–18 (2002).

    Article 
    CAS 

    Google Scholar
     

  • James, N. D. et al. Chondroitinase gene therapy improves upper limb function following cervical contusion injury. Exp. Neurol. 271, 131–135 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Muir, E. M. et al. Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells. J. Biotechnol. 145, 103–110 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bartus, K. et al. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J. Neurosci. 34, 4822–4836 (2014).

    Article 

    Google Scholar
     

  • Esposito, M. S., Capelli, P. & Arber, S. Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508, 351–356 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kathe, C. et al. Wireless closed-loop optogenetics across the entire spinal cord in ecological environments. Nat. Biotechnol. 40, 198–208 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Takeoka, A., Vollenweider, I., Courtine, G. & Arber, S. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell 159, 1626–1639 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat. Protoc. 9, 1682–1697 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Voigt, F. F. et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat. Methods 16, 1105–1108 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Caglayan, E., Liu, Y. & Konopka, G. Neuronal ambient RNA contamination causes misinterpreted and masked cell types in brain single-nuclei datasets. Neuron 110, 4043–4056.e5 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fleming, S. J. et al. Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender. Nat. Methods 20, 1323–1335 (2023).

  • Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902.e21 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8, 329–337.e4 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Germain, P.-L., Lun, A., Meixide, C. G., Macnair, W. & Robinson, M. D. Doublet identification in single-cell sequencing data using scDblFinder. F1000Res. 10, 979 (2021).

    Article 

    Google Scholar
     

  • Bais, A. S. & Kostka, D. scds: computational annotation of doublets in single-cell RNA sequencing data. Bioinformatics 36, 1150–1158 (2019).

    Article 

    Google Scholar
     

  • Xi, N. M. & Li, J. J. Benchmarking computational doublet-detection methods for single-cell RNA sequencing data. Cell Syst. 12, 176–194.e6 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Osseward, P. J. et al. Conserved genetic signatures parcellate cardinal spinal neuron classes into local and projection subsets. Science 372, 385–393 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Häring, M. et al. Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat. Neurosci. 21, 869–880 (2018).

    Article 

    Google Scholar
     

  • Alkaslasi, M. R. et al. Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cord. Nat. Commun. 12, 2471 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Blum, J. A. et al. Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat. Neurosci. 24, 572–583 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Delile, J. et al. Single cell transcriptomics reveals spatial and temporal dynamics of gene expression in the developing mouse spinal cord. Development 146, dev173807 (2019).

  • Hamel, R. et al. Time-resolved single-cell RNAseq profiling identifies a novel Fabp5-expressing subpopulation of inflammatory myeloid cells in chronic spinal cord injury. Preprint at bioRxiv https://doi.org/10.1101/2020.10.21.346635 (2020).

  • Hayashi, M. et al. Graded arrays of spinal and supraspinal v2a interneuron subtypes underlie forelimb and hindlimb motor control. Neuron 97, 869–884.e5 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sathyamurthy, A. et al. Massively parallel single nucleus transcriptional profiling defines spinal cord neurons and their activity during behavior. Cell Rep. 22, 2216–2225 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wahane, S. et al. Diversified transcriptional responses of myeloid and glial cells in spinal cord injury shaped by HDAC3 activity. Sci. Adv. 7, eabd8811 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baek, M., Menon, V., Jessell, T. M., Hantman, A. W. & Dasen, J. S. Molecular logic of spinocerebellar tract neuron diversity and connectivity. Cell Rep. 27, 2620–2635.e4 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marques, S. et al. Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352, 1326–1329 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • O′Shea, T. M. et al. Border-forming wound repair astrocytes. Preprint at bioRxiv, https://doi.org/10.1101/2023.08.25.554857 (2023).

  • Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

  • Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).

  • Hou, W. & Ji, Z. Palo: spatially aware color palette optimization for single-cell and spatial data. Bioinformatics 38, 3654–3656 (2022).

  • Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234.e4 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Büttner, M., Ostner, J., Müller, C. L., Theis, F. J. & Schubert, B. scCODA is a Bayesian model for compositional single-cell data analysis. Nat. Commun. 12, 6876 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Phipson, B. et al. propeller: testing for differences in cell type proportions in single cell data. Bioinformatics 38, 4720–4726 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Simmons, S. Cell type composition analysis: comparison of statistical methods. Preprint at bioRxiv https://doi.org/10.1101/2022.02.04.479123 (2022).

  • Zimmerman, K. D., Espeland, M. A. & Langefeld, C. D. A practical solution to pseudoreplication bias in single-cell studies. Nat. Commun. 12, 738 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article 

    Google Scholar
     

  • Fornes, O. et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).

    CAS 

    Google Scholar
     

  • Cable, D. M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00830-w (2021).

  • McKenzie, A. T., Katsyv, I., Song, W.-M., Wang, M. & Zhang, B. DGCA: a comprehensive R package for differential gene correlation analysis. BMC Syst. Biol. 10, 106 (2016).

    Article 

    Google Scholar
     

  • Biancalani, T. et al. Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat. Methods 18, 1352–1362 (2021).

    Article 

    Google Scholar
     



  • Source link


    administrator