Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).
Lu, X. B. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).
Saito, Y., Ge, J., Watanabe, K., Taniguchi, T. & Young, A. F. Independent superconductors and correlated insulators in twisted bilayer graphene. Nat. Phys. 16, 926–930 (2020).
Stepanov, P. et al. Untying the insulating and superconducting orders in magic-angle graphene. Nature 583, 375–378 (2020).
Liu, X. et al. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science 371, 1261–1265 (2021).
Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).
Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).
Cao, Y., Park, J. M., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 595, 526–531 (2021).
Liu, X., Zhang, N. J., Watanabe, K., Taniguchi, T. & Li, J. I. A. Isospin order in superconducting magic-angle twisted trilayer graphene. Nat. Phys. 18, 522–527 (2022).
Zhang, Y. et al. Promotion of superconductivity in magic-angle graphene multilayers. Science 377, 1538–1543 (2022).
Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).
Arora, H. S. et al. Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature 583, 379–384 (2020).
Su, R., Kuiri, M., Watanabe, K., Taniguchi, T. & Folk, J. A. Superconductivity in twisted double bilayer graphene stabilized by WSe2. Nat. Mater. 22, 1332–1337 (2023).
Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).
Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).
Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).
Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).
Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).
Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).
Holleis, L. et al. Ising superconductivity and nematicity in Bernal bilayer graphene with strong spin orbit coupling. Preprint at https://arxiv.org/abs/2303.00742 (2023).
Gmitra, M. & Fabian, J. Graphene on transition-metal dichalcogenides: a platform for proximity spin-orbit physics and optospintronics. Phys. Rev. B 92, 155403 (2015).
Gmitra, M. & Fabian, J. Proximity effects in bilayer graphene on monolayer WSe2: field-effect spin valley locking, spin-orbit valve, and spin transistor. Phys. Rev. Lett. 119, 146401 (2017).
Khoo, J. Y., Morpurgo, A. F. & Levitov, L. S. On-demand spin-orbit interaction from which-layer tunability in bilayer graphene. Nano Lett. 17, 7003–7008 (2017). 11.
Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).
Avsar, A. et al. Spin–orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014).
Wang, Z. et al. Origin and magnitude of ‘designer’ spin-orbit interaction in graphene on semiconducting transition metal dichalcogenides. Phys. Rev. X 6, 041020 (2016).
Yang, B. W. et al. Tunable spin-orbit coupling and symmetry-protected edge states in graphene/WS2. 2D Mater. 3, 031012 (2016).
Wakamura, T. et al. Strong anisotropic spin-orbit interaction induced in graphene by monolayer WS2. Phys. Rev. Lett. 120, 106802 (2018).
Wang, D. et al. Quantum Hall effect measurement of spin-orbit coupling strengths in ultraclean bilayer graphene/WSe2 heterostructures. Nano Lett. 19, 7028–7034 (2019).
Island, J. O. et al. Spin–orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect. Nature 571, 85–89 (2019).
Lin, J.-X. et al. Spin-orbit-driven ferromagnetism at half moiré filling in magic-angle twisted bilayer graphene. Science 375, 437–441 (2022).
Han, T. et al. Large quantum anomalous Hall effect in spin-orbit proximitized rhombohedral graphene. Science 384, 647–651 (2024).
Sha, Y. et al. Observation of a Chern insulator in crystalline ABCA-tetralayer graphene with spin-orbit coupling. Science 384, 414–419 (2024).
Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).
Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).
Pantaleón, P. A. et al. Superconductivity and correlated phases in non-twisted bilayer and trilayer graphene. Nat. Rev. Phys. 5, 304–315 (2023).
Zhou, H. et al. Half- and quarter-metals in rhombohedral trilayer graphene. Nature 598, 429–433 (2021).
de la Barrera, S. C. et al. Cascade of isospin phase transitions in Bernal-stacked bilayer graphene at zero magnetic field. Nat. Phys. 18, 771–775 (2022).
Seiler, A. M. et al. Quantum cascade of correlated phases in trigonally warped bilayer graphene. Nature 608, 298–302 (2022).
Lin, J. X. et al. Spontaneous momentum polarization and diodicity in Bernal bilayer graphene. Preprint at https://arxiv.org/abs/2302.04261 (2023).
Liu, K. et al. Spontaneous broken-symmetry insulator and metals in tetralayer rhombohedral graphene. Nat. Nanotechnol. 19, 188–195 (2023).
Han, T. et al. Correlated insulator and Chern insulators in pentalayer rhombohedral-stacked graphene. Nat. Nanotechnol. 19, 181–187 (2023).
Han, T. et al. Orbital multiferroicity in pentalayer rhombohedral graphene. Nature 623, 41–47 (2023).
Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).
McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).
Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).
Saito, Y. et al. Superconductivity protected by spin-valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).
Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).
Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1975).
Chou, Y.-Z., Wu, F., Sau, J. & Sarma, S. Acoustic-phonon-mediated superconductivity in Bernal bilayer graphene. Phys. Rev. B 105, L100503 (2022).
Chou, Y.-Z., Wu, F., Sau, J. D. & Das Sarma, S. Acoustic-phonon-mediated superconductivity in moiréless graphene multilayers. Phys. Rev. B 106, 024507 (2022).
Chou, Y.-Z., Wu, F. & Das Sarma, S. Enhanced superconductivity through virtual tunneling in Bernal bilayer graphene coupled to WSe2. Phys. Rev. B 106, L180502 (2022).
Boström, E. V. et al. Phonon-mediated unconventional s– and f-wave pairing superconductivity in rhombohedral stacked multilayer graphene. Preprint at https://arxiv.org/abs/2311.02494 (2023).
Jimeno-Pozo, A., Sainz-Cruz, H., Cea, T., Pantaleón, P. A. & Guinea, F. Superconductivity from electronic interactions and spin-orbit enhancement in bilayer and trilayer graphene. Phys. Rev. B 107, L161106 (2023).
Wagner, G., Kwan, Y., Bultinck, N., Simon, S. & Parameswaran, S. Superconductivity from repulsive interactions in Bernal-stacked bilayer graphene. Preprint at https://arxiv.org/abs/2302.00682 (2023).
Li, Z. et al. Charge fluctuations, phonons, and superconductivity in multilayer graphene. Phys. Rev. B 108, 045404 (2023).
Cea, T. Superconductivity induced by the intervalley Coulomb scattering in a few layers of graphene. Phys. Rev. B 107, L041111 (2023).
Szabó, A. L. & Roy, B. Competing orders and cascade of degeneracy lifting in doped Bernal bilayer graphene. Phys. Rev. B 105, L201107 (2022).
Dong, Z., Chubukov, A. V. & Levitov, L. Transformer spin-triplet superconductivity at the onset of isospin order in bilayer graphene. Phys. Rev. B 107, 174512 (2023).
Dong, Z., Levitov, L. & Chubukov, A. V. Superconductivity near spin and valley orders in graphene multilayers. Phys. Rev. B 108, 134503 (2023).
Curtis, J. B. et al. Stabilizing fluctuating spin-triplet superconductivity in graphene via induced spin-orbit coupling. Phys. Rev. Lett. 130, 196001 (2023).
Jung, J. & MacDonald, A. H. Accurate tight-binding models for the π bands of bilayer graphene. Phys. Rev. B 89, 035405 (2014).
Xie, M. & Sarma, S. D. Flavor symmetry breaking in spin-orbit coupled bilayer graphene. Phys. Rev. B 107, L201119 (2023).
Dong, Z., Davydova, M., Ogunnaike, O. & Levitov, L. Isospin- and momentum-polarized orders in bilayer graphene. Phys. Rev. B 107, 075108 (2023).
Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).
Xu, Y. et al. Creation of moiré bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 20, 645–649 (2021).
Yu, Y. J. et al. Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430–3434 (2009).