• McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science. Science 314, 1740–1745 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, W. et al. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00199-z (2021).

  • Cane, M. A., Zebiak, S. E. & Dolan, S. C. Experimental forecasts of El Niño. Nature 321, 827–832 (1986).

    ADS 

    Google Scholar
     

  • Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S. & DeWitt, D. G. Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull. Amer. Meteor. Soc. 93, 631–651 (2012).

    ADS 

    Google Scholar
     

  • Tang, Y. et al. Progress in ENSO prediction and predictability study. Natl Sci. Rev. 5, 826–839 (2018).


    Google Scholar
     

  • L’Heureux, M. L. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 227–246 (American Geophysical Union, 2020).

  • Ham, Y.-G., Kim, J.-H. & Luo, J.-J. Deep learning for multi-year ENSO forecasts. Nature 573, 568–572 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, L. & Zhang, R.-H. A self-attention–based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions. Sci. Adv. 9, eadf2827 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, H., Hu, S. & Li, X. An interpretable deep learning ENSO forecasting model. Ocean Land Atmos. Res. 2, 0012 (2023).


    Google Scholar
     

  • Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

    ADS 

    Google Scholar
     

  • Zhang, H., Clement, A. & Nezio, P. D. The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).

    ADS 

    Google Scholar
     

  • Jin, Y. et al. The Indian Ocean weakens ENSO spring predictability barrier: role of the Indian Ocean Basin and dipole modes. J. Clim. 36, 8331–8345 (2023).

    ADS 

    Google Scholar
     

  • Izumo, T., Vialard, J. & Lengaigne, M. Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat. Geosci. https://doi.org/10.1038/NGEO760 (2010).

  • Jo, H.-S. et al. Southern Indian Ocean Dipole as a trigger for Central Pacific El Niño since the 2000s. Nat. Commun. 13, 6965 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ham, Y.-G., Kug, J.-S., Park, J.-Y. & Jin, F.-F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nature Geosci. 6, 112–116 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Ham, Y.-G., Kug, J.-S. & Park, J.-Y. Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett. 40, 4012–4017 (2013).

    ADS 

    Google Scholar
     

  • Ham, Y.-G. et al. Inter-basin interaction between variability in the South Atlantic Ocean and the El Niño/Southern Oscillation. Geophys. Res. Lett. 48, e2021GL093338 (2021).

    ADS 

    Google Scholar
     

  • Jansen, M. F., Dommenget, D. & Keenlyside, N. Tropical atmosphere–ocean interactions in a conceptual framework. J. Climate 22, 550–567 (2009).

    ADS 

    Google Scholar
     

  • Frauen, C. & Dommenget, D. Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys. Res. Lett. 39, L02706 (2012).

    ADS 

    Google Scholar
     

  • Luo, J.-J. et al. Interaction between El Niño and Extreme Indian Ocean Dipole. J. Climate 23, 726–742 (2010).

    ADS 

    Google Scholar
     

  • Keenlyside, N. S., Ding, H. & Latif, M. Potential of equatorial Atlantic variability to enhance El Nino prediction. Geophys. Res. Lett. 40, 2278–2283 (2013).

    ADS 

    Google Scholar
     

  • Luo, J.-J., Liu, G., Hendon, H., Alves, O. & Yamagata, T. Inter-basin sources for two-year predictability of the multi-year La Nina event in 2010-2012. Sci. Rep. 7, 2276 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keenlyside, N. et al. in Interacting Climates of Ocean Basins: Observations, Mechanisms, Predictability, and Impacts (ed. Mechoso, C. R.) 258–292 (Cambridge Univ. Press, 2020).

  • Exarchou, E. et al. Impact of equatorial Atlantic variability on ENSO predictive skill. Nat. Commun. 12, 1612 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, M. A., Shin, S.-I. & Battisti, D. S. The influence of the trend, basin interactions, and ocean dynamics on tropical ocean prediction. Geophys. Res. Lett. 49, e2021GL096120 (2022).

    ADS 

    Google Scholar
     

  • Kido, S., Richter, I., Tozuka, T. & Chang, P. Understanding the interplay between ENSO and related tropical SST variability using linear inverse models. Clim. Dyn. 61,1029–1048 (2023).

  • Stuecker, M. F. et al. Revisiting ENSO/Indian Ocean dipole phase relationships. Geophys. Res. Lett. 44, 2016GL072308 (2017).


    Google Scholar
     

  • Zhang, W., Jiang, F., Stuecker, M. F., Jin, F.-F. & Timmermann, A. Spurious North Tropical Atlantic precursors to El Niño. Nat. Commun. 12, 3096 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S.-K. et al. On the fragile relationship between El Niño and California rainfall. Geophys. Res. Lett. 45, 907–915 (2018).

    ADS 

    Google Scholar
     

  • Jeong, H., Park, H.-S., Stuecker, M. F. & Yeh, S.-W. Distinct impacts of major El Niño events on Arctic temperatures due to differences in eastern tropical Pacific sea surface temperatures. Sci. Adv. 8, eabl8278 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McPhaden, M. J. A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett. 39, 2012GL051826 (2012).

  • Choi, J., An, S.-I. & Yeh, S.-W. Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Clim. Dyn. 38, 2631–2644 (2012).


    Google Scholar
     

  • Zhao, Y., Jin, Y., Capotondi, A., Li, J. & Sun, D. The role of Tropical Atlantic in ENSO predictability barrier. Geophys. Res. Lett. 50, e2022GL101853 (2023).

    ADS 

    Google Scholar
     

  • Anderson, B. T. On the joint role of subtropical atmospheric variability and equatorial subsurface heat content anomalies in initiating the onset of ENSO events. J. Clim. 20, 1593–1599 (2007).

    ADS 

    Google Scholar
     

  • Larson, S. M., Pegion, K. V. & Kirtman, B. P. The South Pacific Meridional Mode as a thermally driven source of ENSO amplitude modulation and uncertainty. J. Clim. 31, 5127–5145 (2018).

    ADS 

    Google Scholar
     

  • Stuecker, M. F. Revisiting the Pacific Meridional Mode. Sci. Rep. 8, 3216 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, J.-H. et al. Mid-latitude leading double-dip La Niña. Int. J. Climatol. 41, E1353–E1370 (2021).


    Google Scholar
     

  • Ding, R. et al. Multi-year El Niño events tied to the North Pacific oscillation. Nat. Commun. 13, 3871 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geng, T. et al. Increased occurrences of consecutive La Niña events under global warming. Nature 619, 774–781 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kug, J.-S. & Kang, I.-S. Interactive feedback between ENSO and the Indian Ocean. J. Climate 19, 1784–1801 (2006).

    ADS 

    Google Scholar
     

  • Hasan, N. A., Chikamoto, Y. & McPhaden, M. J. The influence of tropical basin interactions on the 2020–2022 double-dip La Niña. Front. Clim. 4, 1001174 (2022).

  • Iwakiri, T. et al. Triple-Dip La Niña in 2020–23: North Pacific atmosphere drives 2nd year La Niña. Geophys. Res. Lett. 50, e2023GL105763 (2023).

    ADS 

    Google Scholar
     

  • Zhao, S. et al. Improved predictability of the Indian Ocean dipole using a stochastic dynamical model compared to the North American multimodel ensemble forecast. Weather Forecast. 35, 379–399 (2020).

    ADS 

    Google Scholar
     

  • Chen, H.-C., Jin, F.-F., Zhao, S., Wittenberg, A. T. & Xie, S. ENSO dynamics in the E3SM-1-0, CESM2, and GFDL-CM4 climate models. J. Clim. 34, 9365–9384 (2021).

    ADS 

    Google Scholar
     

  • Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E. & Huang, D. Predictability of El Niño over the past 148 years. Nature 428, 733–736 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, T., Song, X., Tang, Y., Shen, Z. & Tan, X. ENSO predictability over the past 137 years based on a CESM ensemble prediction system. J. Clim. 35, 763–777 (2022).

    ADS 

    Google Scholar
     

  • Weisheimer, A. et al. Variability of ENSO forecast skill in 2-year global reforecasts over the 20th century. Geophys. Res. Lett. 49, e2022GL097885 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lou, J., Newman, M. & Hoell, A. Multi-decadal variation of ENSO forecast skill since the late 1800s. npj Clim. Atmos. Sci. 6, 89 (2023).


    Google Scholar
     

  • Jin, F.-F. et al. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 119–151 (American Geophysical Union, 2020).

  • Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    ADS 

    Google Scholar
     

  • Hasselmann, K. Stochastic climate models, Part I. Theory. Tellus 28, 473–485 (1976).

    ADS 

    Google Scholar
     

  • Frankignoul, C. & Hasselmann, K. Stochastic climate models, Part II. Application to sea-surface temperature anomalies and thermocline variability. Tellus 29, 289–305 (1977).

    ADS 

    Google Scholar
     

  • Stuecker, M. F. The climate variability trio: stochastic fluctuations, El Niño, and the seasonal cycle. Geosci. Lett. 10, 51 (2023).

    ADS 

    Google Scholar
     

  • Meinen, C. S. & McPhaden, M. J. Observations of warm water volume changes in the Equatorial Pacific and their relationship to El Niño and La Niña. J. Climate 13, 3551–3559 (2000).

    ADS 

    Google Scholar
     

  • Richter, I., Stuecker, M. F., Takahashi, N. & Schneider, N. Disentangling the North Pacific Meridional Mode from tropical Pacific variability. npj Clim. Atmos. Sci. 5, 94 (2022).


    Google Scholar
     

  • Klein, S. A., Soden, B. J. & Lau, N. C. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Climate 12, 917–932 (1999).

    ADS 

    Google Scholar
     

  • Xie, S.-P. et al. Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J. Climate 22, 730–747 (2009).

    ADS 

    Google Scholar
     

  • Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401, 356–360 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Enfield, D. B. & Mayer, D. A. Tropical Atlantic sea surface temperature variability and its relation to El Nino southern oscillation. J. Geophys. Res.-Oceans 102, 929–945 (1997).

    ADS 

    Google Scholar
     

  • Zebiak, S. Air-sea interaction in the Equatorial Atlantic Region. J. Clim. 6, 1567–1568 (1993).

    ADS 

    Google Scholar
     

  • Nnamchi, H. C. et al. Thermodynamic controls of the Atlantic Niño. Nat. Commun. 6, 8895 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rodrigues, R. R., Campos, E. J. D. & Haarsma, R. The impact of ENSO on the South Atlantic Subtropical Dipole mode. J. Clim. 28, 2691–2705 (2015).

    ADS 

    Google Scholar
     

  • Jin, F.-F., Kim, S. T. & Bejarano, L. A coupled‐stability index for ENSO. Geophys. Res. Lett. 33, (2006).

  • An, S.-I., Tziperman, E., Okumura, Y. M. & Li, T. in El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J. et al.) 153–172 (American Geophysical Union, 2020).

  • An, S.-I. & Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Climate 17, 2399–2412 (2004).

    ADS 

    Google Scholar
     

  • Kang, I.-S. & Kug, J.-S. El Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J. Geophys. Res. Atmos. 107, 1–10 (2002).


    Google Scholar
     

  • Choi, K.-Y., Vecchi, G. A. & Wittenberg, A. T. ENSO transition, duration, and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J. Climate 26, 9462–9476 (2013).

    ADS 

    Google Scholar
     

  • Geng, T., Cai, W. & Wu, L. Two types of ENSO varying in tandem facilitated by nonlinear atmospheric convection. Geophys. Res. Lett. 47, e2020GL088784 (2020).

    ADS 

    Google Scholar
     

  • An, S.-I. et al. Main drivers of Indian Ocean Dipole asymmetry revealed by a simple IOD model. npj Clim. Atmos. Sci. 6, 93 (2023).


    Google Scholar
     

  • Lübbecke, J. F. & McPhaden, M. J. Symmetry of the Atlantic Niño mode. Geophys. Res. Lett. 44, 965–973 (2017).

    ADS 

    Google Scholar
     

  • Gebbie, G., Eisenman, I., Wittenberg, A. & Tziperman, E. Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J. Atmos. Sci. 64, 3281–3295 (2007).

    ADS 

    Google Scholar
     

  • Jin, F.-F., Lin, L., Timmermann, A. & Zhao, J. Ensemble-mean dynamics of the ENSO recharge oscillator under state-dependent stochastic forcing. Geophys. Res. Lett. 34, 2006GL027372 (2007).

  • Zhao, S., Jin, F.-F. & Stuecker, M. F. Improved predictability of the Indian Ocean dipole using seasonally modulated ENSO forcing forecasts. Geophys. Res. Lett. 46, 9980–9990 (2019).

    ADS 

    Google Scholar
     

  • Chen, H.-C. & Jin, F.-F. Simulations of ENSO phase-locking in CMIP5 and CMIP6. J. Clim. 34, 5135–5149 (2021).

    ADS 

    Google Scholar
     

  • Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis (Springer, 2001).

  • Vimont, D. J. Analysis of the Atlantic meridional mode using linear inverse modeling: seasonality and regional influences. J. Clim. 25, 1194–1212 (2012).

    ADS 

    Google Scholar
     

  • Zhao, Y., Jin, Y., Li, J. & Capotondi, A. The role of extratropical Pacific in crossing ENSO spring predictability barrier. Geophys. Res. Lett. 49, e2022GL099488 (2022).

    ADS 

    Google Scholar
     

  • Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

  • Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    ADS 

    Google Scholar
     

  • Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).

    ADS 

    Google Scholar
     

  • Köhl, A. Evaluating the GECCO3 1948–2018 ocean synthesis – a configuration for initializing the MPI-ESM climate model. Q. J. R. Meteorolog. Soc. 146, 2250–2273 (2020).

    ADS 

    Google Scholar
     

  • Behringer, D. & Xue, Y. Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In Proc. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface AMS 84th Annual Meeting (AMS, 2004).

  • Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).

    ADS 

    Google Scholar
     

  • de Boisséson, E., Balmaseda, M. A. & Mayer, M. Ocean heat content variability in an ensemble of twentieth century ocean reanalyses. Clim. Dyn. 50, 3783–3798 (2018).


    Google Scholar
     

  • Yin, Y., Alves, O. & Oke, P. R. An ensemble ocean data assimilation system for seasonal prediction. Mon. Wea. Rev. 139, 786–808 (2011).

    ADS 

    Google Scholar
     

  • Carton, J. A. & Giese, B. S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev. 136, 2999–3017 (2008).

    ADS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorolog. Soc. 146, 1999–2049 (2020).

    ADS 

    Google Scholar
     

  • Xie, P. P. & Arkin, P. A. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc. 78, 2539–2558 (1997).

    ADS 

    Google Scholar
     

  • Kirtman, B. P. et al. The North American Multimodel Ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal predictio. Bull. Amer. Meteor. Soc. 95, 585–601 (2014).

    ADS 

    Google Scholar
     

  • Mu, B., Qin, B. & Yuan, S. ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler. Geosci. Model Dev. 14, 6977–6999 (2021).

    ADS 

    Google Scholar
     

  • Gao, C., Zhou, L. & Zhang, R.-H. A transformer-based deep learning model for successful predictions of the 2021 second-year La Niña condition. Geophys. Res. Lett. 50, e2023GL104034 (2023).

    ADS 

    Google Scholar
     

  • Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    ADS 

    Google Scholar
     

  • Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).

    ADS 

    Google Scholar
     

  • Shiogama, H. et al. MIROC6 Large Ensemble (MIROC6-LE): experimental design and initial analyses. Earth Syst. Dyn. 14, 1107–1124 (2023).

    ADS 

    Google Scholar
     

  • Maher, N. et al. The Max Planck Institute Grand Ensemble: enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2069 (2019).

    ADS 

    Google Scholar
     

  • Brady, R. X. & Spring, A. climpred: verification of weather and climate forecasts. J. Open Source Softw. 6, 2781 (2021).

    ADS 

    Google Scholar
     

  • Zhang, Z., Ren, B. & Zheng, J. A unified complex index to characterize two types of ENSO simultaneously. Sci. Rep. 9, 8373 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stein, K., Timmermann, A., Schneider, N., Jin, F.-F. & Stuecker, M. F. ENSO seasonal synchronization theory. J. Climate 27, 5285–5310 (2014).

    ADS 

    Google Scholar
     

  • Levine, A. F. Z. & McPhaden, M. J. The annual cycle in ENSO growth rate as a cause of the spring predictability barrier. Geophys. Res. Lett. 42, 5034–5041 (2015).

    ADS 

    Google Scholar
     

  • Zhao, S., Jin, F.-F. & Stuecker, M. F. Understanding lead times of warm water volumes to ENSO sea surface temperature anomalies. Geophys. Res. Lett. 48, e2021GL094366 (2021).

    ADS 

    Google Scholar
     

  • Okumura, Y. M., Ohba, M., Deser, C. & Ueda, H. A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Clim. 24, 3822–3829 (2011).

    ADS 

    Google Scholar
     

  • DiNezio, P. N. & Deser, C. Nonlinear controls on the persistence of La Niña. J. Climate 27, 7335–7355 (2014).

    ADS 

    Google Scholar
     

  • Iwakiri, T. & Watanabe, M. Mechanisms linking multi-year La Niña with preceding strong El Niño. Sci. Rep. 11, 17465 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iwakiri, T. & Watanabe, M. Multiyear ENSO dynamics as revealed in observations, climate model simulations, and the linear recharge oscillator. J. Clim. 35, 7625–7642 (2022).


    Google Scholar
     

  • Kim, J.-W., Yu, J.-Y. & Tian, B. Overemphasized role of preceding strong El Niño in generating multi-year La Niña events. Nat. Commun. 14, 6790 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J.-W. & Yu, J.-Y. Single- and multi-year ENSO events controlled by pantropical climate interactions. npj Clim. Atmos. Sci. 5, 88 (2022).


    Google Scholar
     

  • Chen, H.-C., Jin, F.-F. & Jiang, L. The phase-locking of Tropical North Atlantic and the contribution of ENSO. Geophys. Res. Lett. 48, e2021GL095610 (2021).

    ADS 

    Google Scholar
     

  • Jiang, F. et al. Resolving the Tropical Pacific/Atlantic interaction vonundrum. Geophys. Res. Lett. 50, e2023GL103777 (2023).

    ADS 

    Google Scholar
     

  • Trenberth, K. E. The definition of El Niño. Bull. Am. Meteorol. Soc. 78, 2771–2778 (1997).

    ADS 

    Google Scholar
     

  • Enfield, D. B., Mestas-Nuñez, A. M., Mayer, D. A. & Cid-Serrano, L. How ubiquitous is the dipole relationship in tropical Atlantic sea surface temperatures? J. Geophys. Res. Oceans 104, 7841–7848 (1999).

    ADS 

    Google Scholar
     

  • Elson, P. et al. SciTools/cartopy v.0.22.0. Zenodo https://doi.org/10.5281/zenodo.1182735 (2023).

  • Zhao, S. Source data for ‘Explainable El Niño predictability from climate mode interactions’. Zenodo https://doi.org/10.5281/zenodo.10951443 (2024).

  • Zhao, S. Extended nonlinear recharge oscillator (XRO) model for ‘Explainable El Niño predictability from climate mode interactions’. Zenodo https://doi.org/10.5281/zenodo.10681114 (2024).



  • Source link