• Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774.e18 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meissner, G. W. et al. A searchable image resource of Drosophila GAL4 driver expression patterns with single neuron resolution. eLife 12, e80660 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuan, A. T. et al. Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat. Neurosci. 23, 1637–1643 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tuthill, J. C. & Wilson, R. I. Mechanosensation and adaptive motor control in insects. Curr. Biol. 26, R1022–R1038 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baek, M. & Mann, R. S. Lineage and birth date specify motor neuron targeting and dendritic architecture in adult Drosophila. J. Neurosci. 29, 6904–6916 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brierley, D. J., Rathore, K., VijayRaghavan, K. & Williams, D. W. Developmental origins and architecture of Drosophila leg motoneurons. J. Comp. Neurol. 520, 1629–1649 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burke, R. E. Motor units: anatomy, physiology, and functional organization. Compr. Physiol. https://doi.org/10.1002/cphy.cp010210 (2011).

  • Dickinson, M. H. & Tu, M. S. The function of dipteran flight muscle. Comp. Biochem. Physiol. A 116, 223–238 (1997).

    Article 

    Google Scholar
     

  • O’Sullivan, A. et al. Multifunctional wing motor control of song and flight. Curr. Biol. 28, 2705–2717.e4 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Trimarchi, J. R. & Schneiderman, A. M. The motor neurons innervating the direct flight muscles of Drosophila melanogaster are morphologically specialized. J. Comp. Neurol. 340, 427–443 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ikeda, K. & Koenig, J. H. Morphological identification of the motor neurons innervating the dorsal longitudinal flight muscle of Drosophila melanogaster. J. Comp. Neurol. 273, 436–444 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlurmann, M. & Hausen, K. Motoneurons of the flight power muscles of the blowfly Calliphora erythrocephala: structures and mutual dye coupling. J. Comp. Neurol. 500, 448–464 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donovan, E. R. et al. Muscle activation patterns and motor anatomy of anna’s hummingbirds Calypte anna and zebra finches Taeniopygia guttata. Physiol. Biochem. Zool. 86, 27–46 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Takemura, S.-Y. et al. A connectome of the male Drosophila ventral nerve cord. eLife https://doi.org/10.7554/eLife.97769.1 (2024).

  • Marin, E. C. et al. Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation. Preprint at bioRxiv https://doi.org/10.1101/2023.06.05.543407 (2023).

  • Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546656 (2023).

  • Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing quantifies circuit stereotypy in Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2023.06.27.546055 (2023).

  • Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheong, H. S. J. et al. Transforming descending input into behavior: the organization of premotor circuits in the Drosophila Male Adult Nerve Cord connectome. eLife https://doi.org/10.7554/eLife.96084.1 (2024).

  • Buhmann, J. et al. Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set. Nat. Methods 18, 771–774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dorkenwald, S. et al. FlyWire: online community for whole-brain connectomics. Nat. Methods 19, 119–128 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Azevedo, A. W. et al. A size principle for recruitment of Drosophila leg motor neurons. eLife 9, e56754 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enriquez, J. et al. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron 86, 955–970 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatasubramanian, L. et al. Stereotyped terminal axon branching of leg motor neurons mediated by IgSF proteins DIP-α and Dpr10. eLife 8, e42692 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burrows, M. & Horridge, G. A. The organization of inputs to motoneurons of the locust metathoracic leg. Philos. Trans. R. Soc. Lond. B. 269, 49–94 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karashchuk, P. et al. Anipose: a toolkit for robust markerless 3D pose estimation. Cell Rep. 36, 109730 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dickinson, M. H. et al. How animals move: an integrative view. Science 288, 100–106 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegler, M. V. Electrical coupling between supernumerary motor neurones in the locust. J. Exp. Biol. 101, 105–119 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartenstein, V. in Muscle Development in Drosophila (ed. Sink, H.) 8–27 (Springer, 2006).

  • Hoyle, G. Muscles and Their Neural Control (Wiley, 1983).

  • Landgraf, M., Bossing, T., Technau, G. M. & Bate, M. The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J. Neurosci. 17, 9642–9655 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, M. C., Jansen, J. K. & Van Essen, D. Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. J. Physiol. 261, 387–422 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radnikow, G. & Bässler, U. Function of a muscle whose apodeme travels through a joint moved by other muscles: why the retractor unguis muscle in stick insects is tripartite and has no antagonist. J. Exp. Biol. 157, 87–99 (1991).

    Article 

    Google Scholar
     

  • Wolf, H. Inhibitory motoneurons in arthropod motor control: organisation, function, evolution. J. Comp. Physiol. A 200, 693–710 (2014).

    Article 

    Google Scholar
     

  • Burrows, M., Watson, A. H. D. & Brunn, D. Physiological and ultrastructural characterization of a central synaptic connection between identified motor neurons in the locust. Eur. J. Neurosci. 1, 111–126 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Schneider-Mizell, C. M. et al. Quantitative neuroanatomy for connectomics in Drosophila. eLife 5, e12059 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mark, B. et al. A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. eLife. 10, e67510 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsunaga, T., Kohsaka, H. & Nose, A. Gap junction–mediated signaling from motor neurons regulates motor generation in the central circuits of larval Drosophila. J. Neurosci. 37, 2045–2060 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marder, E., Gutierrez, G. J. & Nusbaum, M. P. Complicating connectomes: electrical coupling creates parallel pathways and degenerate circuit mechanisms. Dev. Neurobiol. 77, 597–609 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pringle, J. W. S. Insect Flight (Cambridge Univ. Press, 1957).

  • Deora, T., Gundiah, N. & Sane, S. P. Mechanics of the thorax in flies. J. Exp. Biol. 220, 1382–1395 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hürkey, S. et al. Gap junctions desynchronize a neural circuit to stabilize insect flight. Nature 618, 118–125 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, D. G. & Wyman, R. J. Anatomy of the giant fibre pathway in Drosophila. I. Three thoracic components of the pathway. J. Neurocytol. 9, 753–770 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kennedy, T. & Broadie, K. Newly identified electrically coupled neurons support development of the Drosophila Giant fiber model circuit. eNeuro 5, ENEURO.0346–18.2018 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • von Reyn, C. R. et al. A spike-timing mechanism for action selection. Nat. Neurosci. 17, 962–970 (2014).

    Article 

    Google Scholar
     

  • Lacin, H. et al. Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS. eLife 8, e43701 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nachtigall, W. & Wilson, D. M. Neuro-muscular control of dipteran flight. J. Exp. Biol. 47, 77–97 (1967).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans sexes. Nature 571, 63–71 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eschbach, C. & Zlatic, M. Useful road maps: studying Drosophila larva’s central nervous system with the help of connectomics. Curr. Opin. Neurobiol. 65, 129–137 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bargmann, C. I. & Marder, E. From the connectome to brain function. Nat. Methods 10, 483–490 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 187, 2574–2594.e23 (2024).

  • Agrawal, S. et al. Central processing of leg proprioception in Drosophila. eLife 9, e60299 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C. et al. Functional architecture of neural circuits for leg proprioception in Drosophila. Curr. Biol. 31, 5163–5175.e7 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howard, C. E. et al. Serotonergic modulation of walking in Drosophila. Curr. Biol. 29, 4218–4230.e8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lesser, E. et al. Synaptic architecture of leg and wing premotor control networks in Drosophila. Nature https://doi.org/10.1038/s41586-024-07600-z (2024).

  • Aymanns, F., Chen, C.-L. & Ramdya, P. Descending neuron population dynamics during odor-evoked and spontaneous limb-dependent behaviors. eLife 11, e81527 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C.-L. et al. Ascending neurons convey behavioral state to integrative sensory and action selection brain regions. Nat. Neurosci. 26, 682–695 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lobato-Rios, V. et al. NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster. Nat. Methods 19, 620–627 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heckscher, E. S. et al. Even-skipped+ interneurons are core components of a sensorimotor circuit that maintains left–right symmetric muscle contraction amplitude. Neuron 88, 314–329 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrawal, S. & Tuthill, J. C. The two-body problem: proprioception and motor control across the metamorphic divide. Curr. Opin. Neurobiol. 74, 102546 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barsotti, E., Correia, A. & Cardona, A. Neural architectures in the light of comparative connectomics. Curr. Opin. Neurobiol. 71, 139–149 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Popovych, S, et al.Petascale pipeline for precise alignment of images from serial section electron microscopy. Nat. Commun. 15, 289 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Macrina, T. et al. Petascale neural circuit reconstruction: automated methods. Preprint at bioRxiv https://doi.org/10.1101/2021.08.04.455162 (2021).

  • Dorkenwald, S. et al. CAVE: Connectome Annotation Versioning Engine. Preprint at bioRxiv https://doi.org/10.1101/2023.07.26.550598 (2023).

  • Otsuna, H., Ito, M. & Kawase, T. Color depth MIP mask search: a new tool to expedite Split-GAL4 creation. Preprint at biorXiv https://doi.org/10.1101/318006 (2018).

  • Maitin-Shepard, J. et al. google/neuroglancer:. Zenodo https://doi.org/10.5281/zenodo.5573294 (2021).

  • Mu, S. et al. 3D reconstruction of cell nuclei in a full Drosophila brain. Preprint at bioRxiv https://doi.org/10.1101/2021.11.04.467197 (2021).

  • Lee, K., Zung, J., Li, P., Jain, V. & Seung, H. S. Superhuman accuracy on the SNEMI3D connectomics challenge. Preprint at arXiv https://doi.org/10.48550/arXiv.1706.00120 (2017).

  • Lesser, E. & Azevedo, A. CSVs and scripts from Azevedo, Lesser, Phelps, Mark et. al., 2023, as well as a space to host json states of neuroglancer views linked in the paper. Github https://github.com/EllenLesser/Azevedo_Lesser_Phelps_Mark_2023/ (2023).

  • Azevedo, A., Sustar, A. & Tuthill, J. Confocal image stacks of GFP expression in Drosophila forelegs driven by Gal4 driver expression in foreleg motor neurons. Dryad https://doi.org/10.5061/dryad.k0p2ngfg0 (2024).

  • Costa, M., Manton, J. D., Ostrovsky, A. D., Prohaska, S. & Jefferis, G. S. X. E. NBLAST: Rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 91, 293–311 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at arXiv https://doi.org/10.48550/arXiv.1802.03426 (2020).

  • Court, R. et al. A systematic nomenclature for the Drosophila ventral nerve cord. Neuron 107, 1071–1079.e2 (2020).

  • Heide, G. Neural mechanisms of flight control in Diptera. BIONA-Rep. 2, 35–52 (1983).

  • Ehrhardt, E. et al. Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster. Preprint at bioRxiv https://doi.org/10.1101/2023.05.31.542897 (2023).

  • Melis, J. M., Siwanowicz, I. & Dickinson, M. H. Machine learning reveals the control mechanics of an insect wing hinge. Nature 628, 795–803 (2024)

  • Bacon, J. P. & Strausfeld, N. J. The dipteran ‘giant fibre’ pathway: neurons and signals. J. Comp. Physiol. A 158, 529–548 (1986).

    Article 

    Google Scholar
     

  • Miller, A. in Biology of Drosophila (ed. Demerec, M.) 420–534 (Wiley, 1950).

  • Phelps, J. et al. FANC_auto_recon. GitHub https://github.com/htem/FANC_auto_recon (2023).



  • Source link