Bryndzia, L. T. & Wood, B. J. Oxygen thermobarometry of abyssal spinel peridotites: the redox state and C-O-H volatile composition of the Earth’s sub-oceanic upper mantle. Am. J. Sci. 290, 1093–1116 (1990).
Birner, S. K., Cottrell, E., Warren, J. M., Kelley, K. A. & Davis, F. A. Peridotites and basalts reveal broad congruence between two independent records of mantle fO2 despite local redox heterogeneity. Earth Planet. Sci. Lett. 494, 172–189 (2018).
Cottrell, E. et al. in Magma Redox Geochemistry (eds Moretti, R. & Neuville, D. R.) Ch. 3 (American Geophysical Union, 2022).
Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).
Anser Li, Z. X. & Aeolus Lee, C. T. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004).
Canil, D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 195, 75–90 (2002).
Lee, C.-T. A., Brandon, A. D. & Norman, M. Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: prospects, limitations, and implications. Geochim. Cosmochim. Acta 67, 3045–3064 (2003).
Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 23–26 (1997).
Aulbach, S. & Stagno, V. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44, 751–754 (2016).
Nicklas, R. W. et al. Secular mantle oxidation across the Archean-Proterozoic boundary: evidence from V partitioning in komatiites and picrites. Geochim. Cosmochim. Acta 250, 49–75 (2019).
Stagno, V., Ojwang, D. O., McCammon, C. A. & Frost, D. J. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84–88 (2013).
Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990).
Stolper, D. A. & Bucholz, C. E. Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proc. Natl Acad. Sci. USA 116, 8746–8755 (2019).
Bucholz, C. E., Stolper, E. M., Eiler, J. M. & Breaks, F. W. A comparison of oxygen fugacities of strongly peraluminous granites across the Archean–Proterozoic boundary. J. Petrol. 59, 2123–2156 (2018).
Zhang, H. L., Cottrell, E., Solheid, P., Kelley, K. A. & Hirschmann, M. M. Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chem. Geol. 479, 166–175 (2018).
O’Neill, H. S. C., Berry, A. J. & Mallmann, G. The oxidation state of iron in Mid-Ocean Ridge Basaltic (MORB) glasses: implications for their petrogenesis and oxygen fugacities. Earth Planet. Sci. Lett. 504, 152–162 (2018).
Cottrell, E. & Kelley, K. A. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet. Sci. Lett. 305, 270–282 (2011).
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 355, 283–318 (1997).
Warren, J. M. Global variations in abyssal peridotite compositions. Lithos 248–251, 193–219 (2016).
Voigt, M. & von der Handt, A. Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contrib. Mineral. Petrol. 162, 675–689 (2011).
Andreani, M., Mével, C., Boullier, A.-M. & Escartín, J. Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochem. Geophys. Geosyst. 8, Q02012 (2007).
Birner, S. K., Warren, J. M., Cottrell, E. & Davis, F. A. Hydrothermal alteration of seafloor peridotites does not influence oxygen fugacity recorded by spinel oxybarometry. Geology 44, 535–538 (2016).
Sorbadere, F. et al. The behaviour of ferric iron during partial melting of peridotite. Geochim. Cosmochim. Acta 239, 235–254 (2018).
Davis, F. A. & Cottrell, E. Experimental investigation of basalt and peridotite oxybarometers: implications for spinel thermodynamic models and Fe3+ compatibility during generation of upper mantle melts. Am. Mineral. 103, 1056–1067 (2018).
Birner, S. K., Cottrell, E., Warren, J. M., Kelley, K. A. & Davis, F. A. Melt addition to mid-ocean ridge peridotites increases spinel Cr# with no significant effect on recorded oxygen fugacity. Earth Planet. Sci. Lett. 566, 116951 (2021).
Salters, V. J. M. & Dick, H. J. B. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418, 68–72 (2002).
Shorttle, O., Maclennan, J. & Lambart, S. Quantifying lithological variability in the mantle. Earth Planet. Sci. Lett. 395, 24–40 (2014).
Cipriani, A., Brueckner, H. K., Bonatti, E. & Brunelli, D. Oceanic crust generated by elusive parents: Sr and Nd isotopes in basalt-peridotite pairs from the Mid-Atlantic Ridge. Geology 32, 657–660 (2004).
Warren, J. M., Shimizu, N., Sakaguchi, C., Dick, H. J. B. & Nakamura, E. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J. Geophys. Res. Solid Earth 114, B12203 (2009).
Mallick, S., Dick, H. J. B., Sachi-Kocher, A. & Salters, V. J. M. Isotope and trace element insights into heterogeneity of subridge mantle. Geochem. Geophys. Geosyst. 15, 2438–2453 (2014).
Liu, C.-Z. et al. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452, 311–316 (2008).
D’Errico, M. E., Warren, J. M. & Godard, M. Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel Ridge. Geochim. Cosmochim. Acta 174, 291–312 (2016).
Liu, C. et al. Archean cratonic mantle recycled at a mid-ocean ridge. Sci. Adv. 8, eabn6749 (2022).
Seyler, M., Cannat, M. & Mével, C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochem. Geophys. Geosyst. 4, 9101 (2003).
Byerly, B. L. & Lassiter, J. C. Isotopically ultradepleted domains in the convecting upper mantle: implications for MORB petrogenesis. Geology 42, 203–206 (2014).
Wood, B. J. & Virgo, D. Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta 53, 1277–1291 (1989).
Davis, F. A., Cottrell, E., Birner, S. K., Warren, J. M. & Lopez, O. G. Revisiting the electron microprobe method of spinel-olivine-orthopyroxene oxybarometry applied to spinel peridotites. Am. Mineral. 102, 421–435 (2017).
Dick, H. J. B. & Natland, J. H. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 147 (eds Mével, C., Gillis, K. M., Allan, J. F. & Meyer, P. S.) 103–134 (Ocean Drilling Program, 1996).
Hesse, K. T., Gose, J., Stalder, R. & Schmädicke, E. Water in orthopyroxene from abyssal spinel peridotites of the East Pacific Rise (ODP Leg 147: Hess Deep). Lithos 232, 23–34 (2015).
Smith, D. K., Schouten, H., Turner, R. P. & Klein, E. M. The evolution of seafloor spreading behind the tip of the westward propagating Cocos‐Nazca spreading center. Geochem. Geophys. Geosyst. 21, e2020GC008957 (2020).
Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435–449 (1994).
Bézos, A. & Humler, E. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim. Cosmochim. Acta 69, 711–725 (2005).
Jokat, W. et al. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423, 962–965 (2003).
Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).
Cannat, M. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res. Solid Earth 101, 2847–2857 (1996).
Stracke, A. et al. Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Planet. Sci. Lett. 308, 359–368 (2011).
Lassiter, J. C., Byerly, B. L., Snow, J. E. & Hellebrand, E. Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle. Earth Planet. Sci. Lett. 403, 178–187 (2014).
Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).
Gaillard, F., Scaillet, B., Pichavant, M. & Iacono-Marziano, G. The redox geodynamics linking basalts and their mantle sources through space and time. Chem. Geol. 418, 217–233 (2015).
Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3, 1–35 (2002).
Stolper, E. M., Shorttle, O., Antoshechkina, P. M. & Asimow, P. D. The effects of solid-solid phase equilibria on the oxygen fugacity of the upper mantle. Am. Mineral. 105, 1445–1471 (2020).
Davis, F. A. & Cottrell, E. Partitioning of Fe2O3 in peridotite partial melting experiments over a range of oxygen fugacities elucidates ferric iron systematics in mid-ocean ridge basalts and ferric iron content of the upper mantle. Contrib. Mineral. Petrol. 176, 67 (2021).
Gaetani, G. A. The behavior of Fe3+/ΣFe during partial melting of spinel lherzolite. Geochim. Cosmochim. Acta 185, 64–77 (2016).
Jennings, E. S. & Holland, T. J. B. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56, 869–892 (2015).
Gudmundsson, G. & Wood, B. J. Experimental tests of garnet peridotite oxygen barometry. Contrib. Mineral. Petrol. 119, 56–67 (1995).
Moussallam, Y. et al. Mantle plumes are oxidised. Earth Planet. Sci. Lett. 527, 115798 (2019).
Shorttle, O. et al. Fe-XANES analyses of Reykjanes Ridge basalts: implications for oceanic crust’s role in the solid Earth oxygen cycle. Earth Planet. Sci. Lett. 427, 272–285 (2015).
Brounce, M., Stolper, E. & Eiler, J. The mantle source of basalts from Reunion Island is not more oxidized than the MORB source mantle. Contrib. Mineral. Petrol. 177, 1–18 (2022).
Herzberg, C. Depth and degree of melting of komatiites. J. Geophys. Res. Solid Earth 97, 4521–4540 (1992).
Arndt, N. T. & Lesher, C. M. in Encyclopedia of Geology 260–268 (Elsevier, 2004).
Berry, A. J., Danyushevsky, L. V., O’Neill, H. S. C., Newville, M. & Sutton, S. R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008).
Asafov, E. V. et al. Belingwe komatiites (2.7 Ga) originate from a plume with moderate water content, as inferred from inclusions in olivine. Chem. Geol. 478, 39–59 (2018).
Sobolev, A. V. et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531, 628–632 (2016).
Birner, S. K., Cottrell, E., Davis, F. A. & Warren, J. M. Major elements EMPA method for pyroxene, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.60520/IEDA/113228 (2024).
Birner, S. K., Cottrell, E., Davis, F. A. & Warren, J. M. Major elements EMPA method for olivine, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.60520/IEDA/113227 (2024).
Birner, S. K., Cottrell, E., Davis, F. A. & Warren, J. M. Major elements EMPA method for spinel with secondary standards, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.60520/IEDA/113226 (2024).
Birner, S. K., Cottrell, E., Davis, F. A. & Warren, J. M. Spinel oxybarometry of abyssal peridotites from the Gakkel Ridge and Hess Deep, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.60520/IEDA/113225 (2024).
Li, J., Kornprobst, J., Vielzeuf, D. & Fabriès, J. An improved experimental calibration of the olivine-spinel geothermometer. Chin. J. Geochem. 14, 68–77 (1995).
Montési, L. G. J. & Behn, M. D. Mantle flow and melting underneath oblique and ultraslow mid-ocean ridges. Geophys. Res. Lett. 34, L24307 (2007).
Frost, B. R. in Oxide Minerals: Petrologic and Magnetic Significance (ed. Lindsley, D. H.) 1–9 (De Gruyter, 1991).
Mattioli, G. S. & Wood, B. J. Magnetite activities across the MgAl2O4-Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity. Contrib. Mineral. Petrol. 98, 148–162 (1988).
Nell, J. & Wood, B. J. Thermodynamic properties in a multicomponent solid solution involving cation disorder; Fe3O4-MgFe2O4-FeAl2O4-MgAl2O4 spinels. Am. Mineral. 74, 1000–1015 (1989).
Sack, R. O. & Ghiorso, M. S. An internally consistent model for the thermodynamic properties of Fe–Mg–titanomagnetite–aluminate spinels. Contrib. Mineral. Petrol. 106, 474–505 (1991).
Sack, R. O. & Ghiorso, M. S. Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. Am. Mineral. 76, 827–847 (1991).
Birner, S. K. et al. Forearc peridotites from Tonga record heterogeneous oxidation of the mantle following subduction initiation. J. Petrol. 58, 1755–1780 (2017).
Smith, P. M. & Asimow, P. D. Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem. Geophys. Geosyst. 6, Q02004 (2005).
Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).
Canil, D. et al. Ferric iron in peridotites and mantle oxidation states. Earth Planet. Sci. Lett. 123, 205–220 (1994).
Kress, V. C. & Carmichael, I. S. E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991).
Langmuir, C. H., Klein, E. M. & Plank, T. Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Geophys. Monogr. 71, 183–280 (1992).
Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).
Falloon, T. J., Green, D. H., Danyushevsky, L. V. & McNeill, A. W. The composition of near-solidus partial melts of fertile peridotite at 1 and 1·5 GPa: implications for the petrogenesis of MORB. J. Petrol. 49, 591–613 (2008).
Hirschmann, M. M. et al. Library of Experimental Phase Relations (LEPR): a database and Web portal for experimental magmatic phase equilibria data. Geochem. Geophys. Geosyst. 9, Q03011 (2008).
Borisov, A., Behrens, H. & Holtz, F. Ferric/ferrous ratio in silicate melts: a new model for 1 atm data with special emphasis on the effects of melt composition. Contrib. Mineral. Petrol. 173, 98 (2018).
O’Neill, H. S. C. et al. An experimental determination of the effect of pressure on the Fe3+/ΣFe ratio of an anhydrous silicate melt to 3.0 GPa. Am. Mineral. 91, 404–412 (2006).
Zhang, H. L., Hirschmann, M. M., Cottrell, E. & Withers, A. C. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochim. Cosmochim. Acta 204, 83–103 (2017).
Hirschmann, M. M. Magma oceans, iron and chromium redox, and the origin of comparatively oxidized planetary mantles. Geochim. Cosmochim. Acta 328, 221–241 (2022).
Deng, J., Du, Z., Karki, B. B., Ghosh, D. B. & Lee, K. K. M. A magma ocean origin to divergent redox evolutions of rocky planetary bodies and early atmospheres. Nat. Commun. 11, 2007 (2020).
Witt-Eickschen, G. & O’Neill, H. S. C. The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem. Geol. 221, 65–101 (2005).
Canil, D. & O’Neill, H. S. C. Distribution of ferric iron in some upper-mantle assemblages. J. Petrol. 37, 609–635 (1996).
Dyar, M. D., Mcguire, A. V. & Harrell, M. D. Crystal chemistry of iron in two styles of metasomatism in the upper mantle. Geochim. Cosmochim. Acta 56, 2579–2586 (1992).
Dyar, M. D., McGuire, A. V. & Ziegler, R. D. Redox equilibria and crystal chemistry of coexisting minerals from spinel lherzolite mantle xenoliths. Am. Mineral. 74, 969–980 (1989).
Hao, X.-L. & Li, Y.-L. 57Fe Mössbauer spectroscopy of mineral assemblages in mantle spinel lherzolites from Cenozoic alkali basalt, eastern China: petrological applications. Lithos 156–159, 112–119 (2013).
Lazarov, M., Woodland, A. B. & Brey, G. P. Thermal state and redox conditions of the Kaapvaal mantle: a study of xenoliths from the Finsch mine, South Africa. Lithos 112, 913–923 (2009).
Luth, R. W. & Canil, D. Ferric iron in mantle-derived pyroxenes and a new oxybarometer for the mantle. Contrib. Mineral. Petrol. 113, 236–248 (1993).
McGuire, A. V., Dyar, M. D. & Nielson, J. E. Metasomatic oxidation of upper mantle periodotite. Contrib. Mineral. Petrol. 109, 252–264 (1991).
Nimis, P., Goncharov, A., Ionov, D. A. & McCammon, C. Fe3+ partitioning systematics between orthopyroxene and garnet in mantle peridotite xenoliths and implications for thermobarometry of oxidized and reduced mantle rocks. Contrib. Mineral. Petrol. 169, 6 (2015).
Woodland, A. B. Ferric iron contents of clinopyroxene from cratonic mantle and partitioning behaviour with garnet. Lithos 112, 1143–1149 (2009).
Woodland, A. B., Kornprobst, J. & Tabit, A. Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 89, 222–241 (2006).
Woodland, A. B. & Peltonen, P. in Proceedings of the 7th International Kimberlite Conference (P. H. Nixon volume) 904–911 (Red Roof Design, 1999).
Dasgupta, R., Hirschmann, M. M. & Smith, N. D. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093–2124 (2007).
Davis, F. A. & Hirschmann, M. M. The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle. Contrib. Mineral. Petrol. 166, 1029–1046 (2013).
Davis, F. A., Humayun, M., Hirschmann, M. M. & Cooper, R. S. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochim. Cosmochim. Acta 104, 232–260 (2013).
Draper, D. S. & Johnston, A. D. Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib. Mineral. Petrol. 112, 501–519 (1992).
Gaetani, G. A. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131, 323–346 (1998).
Grove, T. L., Holbig, E. S., Barr, J. A., Till, C. B. & Krawczynski, M. J. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite. Contrib. Mineral. Petrol. 166, 887–910 (2013).
Kinzler, R. J. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid‐ocean ridge basalt petrogenesis. J. Geophys. Res. Solid Earth 102, 853–874 (1997).
Longhi, J. Some phase equilibrium systematics of lherzolite melting: I. Geochem. Geophys. Geosyst. 3, 1–33 (2002).
Mallmann, G. & O’Neill, H. S. C. The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochim. Cosmochim. Acta 71, 2837–2857 (2007).
Mercer, C. N. & Johnston, A. D. Experimental studies of the P–T–H2O near-liquidus phase relations of basaltic andesite from North Sister Volcano, High Oregon Cascades: constraints on lower-crustal mineral assemblages. Contrib. Mineral. Petrol. 155, 571–592 (2008).
Novella, D. et al. The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle. Earth Planet. Sci. Lett. 400, 1–13 (2014).
Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994).
Bartels, K. S., Kinzler, R. J. & Grove, T. L. High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib. Mineral. Petrol. 108, 253–270 (1991).
Bulatov, V. K., Girnis, A. V. & Brey, G. P. Experimental melting of a modally heterogeneous mantle. Mineral. Petrol. 75, 131–152 (2002).
Falloon, T. J., Green, D. H., O’Neill, H. S. C. & Hibberson, W. O. Experimental tests of low degree peridotite partial melt compositions: implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth Planet. Sci. Lett. 152, 149–162 (1997).
Falloon, T. J. & Danyushevsky, L. Melting of refractory mantle at 1·5, 2 and 2·5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J. Petrol. 41, 257–283 (2000).
Falloon, T. J., Danyushevsky, L. V. & Green, D. H. Peridotite melting at 1 GPa: reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments. J. Petrol. 42, 2363–2390 (2001).
Falloon, T. J., Green, D. H., Danyushevsky, L. V. & Faul, U. H. Peridotite melting at 1.0 and 1.5 GPa: an experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. J. Petrol. 40, 1343–1375 (1999).
Gaetani, G. A., Kent, A. J. R., Grove, T. L., Hutcheon, I. D. & Stolper, E. M. Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib. Mineral. Petrol. 145, 391–405 (2003).
Grove, T. L. et al. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Mineral. Petrol. 145, 515–533 (2003).
Kinzler, R. J. & Grove, T. L. Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J. Geophys. Res. 97, 6885 (1992).
Laporte, D., Toplis, M. J., Seyler, M. & Devidal, J.-L. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib. Mineral. Petrol. 146, 463–484 (2004).
Laubier, M., Grove, T. L. & Langmuir, C. H. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet. Sci. Lett. 392, 265–278 (2014).
Liu, X. & O’Neill, H. Partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2 ± K2O at 1·1 GPa. J. Petrol. 45, 1339–1368 (2004).
Liu, X. & O’Neill, H. The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2–Cr2O3 at 1·1 GPa. J. Petrol. 45, 2261–2286 (2004).
Pichavant, M., Mysen, B. O. & Macdonald, R. Source and H2O content of high-MgO magmas in island arc settings: an experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim. Cosmochim. Acta 66, 2193–2209 (2002).
Pickering-Witter, J. & Johnston, A. D. The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib. Mineral. Petrol. 140, 190–211 (2000).
Robinson, J. A. C., Wood, B. J. & Blundy, J. D. The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet. Sci. Lett. 155, 97–111 (1998).
Salters, V. J. M., Longhi, J. E. & Bizimis, M. Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochem. Geophys. Geosyst. 3, 1–23 (2002).
Schwab, B. E. & Johnston, A. D. Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J. Petrol. 42, 1789–1811 (2001).
Villiger, S. The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1·0 GPa. J. Petrol. 45, 2369–2388 (2004).
Wasylenki, L. E., Baker, M. B., Kent, A. J. R. & Stolper, E. M. Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J. Petrol. 44, 1163–1191 (2003).