• Bryndzia, L. T. & Wood, B. J. Oxygen thermobarometry of abyssal spinel peridotites: the redox state and C-O-H volatile composition of the Earth’s sub-oceanic upper mantle. Am. J. Sci. 290, 1093–1116 (1990).

    CAS 
    ADS 

    Google Scholar
     

  • Birner, S. K., Cottrell, E., Warren, J. M., Kelley, K. A. & Davis, F. A. Peridotites and basalts reveal broad congruence between two independent records of mantle fO2 despite local redox heterogeneity. Earth Planet. Sci. Lett. 494, 172–189 (2018).

    ADS 

    Google Scholar
     

  • Cottrell, E. et al. in Magma Redox Geochemistry (eds Moretti, R. & Neuville, D. R.) Ch. 3 (American Geophysical Union, 2022).

  • Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • Anser Li, Z. X. & Aeolus Lee, C. T. The constancy of upper mantle fO2 through time inferred from V/Sc ratios in basalts. Earth Planet. Sci. Lett. 228, 483–493 (2004).

    ADS 

    Google Scholar
     

  • Canil, D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 195, 75–90 (2002).

    CAS 
    ADS 

    Google Scholar
     

  • Lee, C.-T. A., Brandon, A. D. & Norman, M. Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: prospects, limitations, and implications. Geochim. Cosmochim. Acta 67, 3045–3064 (2003).

    CAS 
    ADS 

    Google Scholar
     

  • Canil, D. Vanadium partitioning and the oxidation state of Archaean komatiite magmas. Nature 389, 23–26 (1997).


    Google Scholar
     

  • Aulbach, S. & Stagno, V. Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44, 751–754 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • Nicklas, R. W. et al. Secular mantle oxidation across the Archean-Proterozoic boundary: evidence from V partitioning in komatiites and picrites. Geochim. Cosmochim. Acta 250, 49–75 (2019).

    CAS 
    ADS 

    Google Scholar
     

  • Stagno, V., Ojwang, D. O., McCammon, C. A. & Frost, D. J. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84–88 (2013).

    PubMed 
    ADS 

    Google Scholar
     

  • Wood, B. J., Bryndzia, L. T. & Johnson, K. E. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248, 337–345 (1990).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Stolper, D. A. & Bucholz, C. E. Neoproterozoic to early Phanerozoic rise in island arc redox state due to deep ocean oxygenation and increased marine sulfate levels. Proc. Natl Acad. Sci. USA 116, 8746–8755 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Bucholz, C. E., Stolper, E. M., Eiler, J. M. & Breaks, F. W. A comparison of oxygen fugacities of strongly peraluminous granites across the Archean–Proterozoic boundary. J. Petrol. 59, 2123–2156 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • Zhang, H. L., Cottrell, E., Solheid, P., Kelley, K. A. & Hirschmann, M. M. Determination of Fe3+/ΣFe of XANES basaltic glass standards by Mössbauer spectroscopy and its application to the oxidation state of iron in MORB. Chem. Geol. 479, 166–175 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • O’Neill, H. S. C., Berry, A. J. & Mallmann, G. The oxidation state of iron in Mid-Ocean Ridge Basaltic (MORB) glasses: implications for their petrogenesis and oxygen fugacities. Earth Planet. Sci. Lett. 504, 152–162 (2018).

    ADS 

    Google Scholar
     

  • Cottrell, E. & Kelley, K. A. The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet. Sci. Lett. 305, 270–282 (2011).

    CAS 
    ADS 

    Google Scholar
     

  • Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 355, 283–318 (1997).

    ADS 

    Google Scholar
     

  • Warren, J. M. Global variations in abyssal peridotite compositions. Lithos 248–251, 193–219 (2016).

    ADS 

    Google Scholar
     

  • Voigt, M. & von der Handt, A. Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks. Contrib. Mineral. Petrol. 162, 675–689 (2011).

    CAS 
    ADS 

    Google Scholar
     

  • Andreani, M., Mével, C., Boullier, A.-M. & Escartín, J. Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites. Geochem. Geophys. Geosyst. 8, Q02012 (2007).

    ADS 

    Google Scholar
     

  • Birner, S. K., Warren, J. M., Cottrell, E. & Davis, F. A. Hydrothermal alteration of seafloor peridotites does not influence oxygen fugacity recorded by spinel oxybarometry. Geology 44, 535–538 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • Sorbadere, F. et al. The behaviour of ferric iron during partial melting of peridotite. Geochim. Cosmochim. Acta 239, 235–254 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • Davis, F. A. & Cottrell, E. Experimental investigation of basalt and peridotite oxybarometers: implications for spinel thermodynamic models and Fe3+ compatibility during generation of upper mantle melts. Am. Mineral. 103, 1056–1067 (2018).

    ADS 

    Google Scholar
     

  • Birner, S. K., Cottrell, E., Warren, J. M., Kelley, K. A. & Davis, F. A. Melt addition to mid-ocean ridge peridotites increases spinel Cr# with no significant effect on recorded oxygen fugacity. Earth Planet. Sci. Lett. 566, 116951 (2021).

    CAS 

    Google Scholar
     

  • Salters, V. J. M. & Dick, H. J. B. Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418, 68–72 (2002).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Shorttle, O., Maclennan, J. & Lambart, S. Quantifying lithological variability in the mantle. Earth Planet. Sci. Lett. 395, 24–40 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • Cipriani, A., Brueckner, H. K., Bonatti, E. & Brunelli, D. Oceanic crust generated by elusive parents: Sr and Nd isotopes in basalt-peridotite pairs from the Mid-Atlantic Ridge. Geology 32, 657–660 (2004).

    CAS 
    ADS 

    Google Scholar
     

  • Warren, J. M., Shimizu, N., Sakaguchi, C., Dick, H. J. B. & Nakamura, E. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J. Geophys. Res. Solid Earth 114, B12203 (2009).

    ADS 

    Google Scholar
     

  • Mallick, S., Dick, H. J. B., Sachi-Kocher, A. & Salters, V. J. M. Isotope and trace element insights into heterogeneity of subridge mantle. Geochem. Geophys. Geosyst. 15, 2438–2453 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • Liu, C.-Z. et al. Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452, 311–316 (2008).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • D’Errico, M. E., Warren, J. M. & Godard, M. Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel Ridge. Geochim. Cosmochim. Acta 174, 291–312 (2016).

    ADS 

    Google Scholar
     

  • Liu, C. et al. Archean cratonic mantle recycled at a mid-ocean ridge. Sci. Adv. 8, eabn6749 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyler, M., Cannat, M. & Mével, C. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochem. Geophys. Geosyst. 4, 9101 (2003).

    ADS 

    Google Scholar
     

  • Byerly, B. L. & Lassiter, J. C. Isotopically ultradepleted domains in the convecting upper mantle: implications for MORB petrogenesis. Geology 42, 203–206 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • Wood, B. J. & Virgo, D. Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mössbauer spectroscopy and resultant oxygen fugacities. Geochim. Cosmochim. Acta 53, 1277–1291 (1989).

    CAS 
    ADS 

    Google Scholar
     

  • Davis, F. A., Cottrell, E., Birner, S. K., Warren, J. M. & Lopez, O. G. Revisiting the electron microprobe method of spinel-olivine-orthopyroxene oxybarometry applied to spinel peridotites. Am. Mineral. 102, 421–435 (2017).

    ADS 

    Google Scholar
     

  • Dick, H. J. B. & Natland, J. H. in Proceedings of the Ocean Drilling Program, Scientific Results Vol. 147 (eds Mével, C., Gillis, K. M., Allan, J. F. & Meyer, P. S.) 103–134 (Ocean Drilling Program, 1996).

  • Hesse, K. T., Gose, J., Stalder, R. & Schmädicke, E. Water in orthopyroxene from abyssal spinel peridotites of the East Pacific Rise (ODP Leg 147: Hess Deep). Lithos 232, 23–34 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • Smith, D. K., Schouten, H., Turner, R. P. & Klein, E. M. The evolution of seafloor spreading behind the tip of the westward propagating Cocos‐Nazca spreading center. Geochem. Geophys. Geosyst. 21, e2020GC008957 (2020).

    ADS 

    Google Scholar
     

  • Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet. Sci. Lett. 121, 435–449 (1994).

    CAS 
    ADS 

    Google Scholar
     

  • Bézos, A. & Humler, E. The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting. Geochim. Cosmochim. Acta 69, 711–725 (2005).

    ADS 

    Google Scholar
     

  • Jokat, W. et al. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge. Nature 423, 962–965 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Cannat, M. How thick is the magmatic crust at slow spreading oceanic ridges? J. Geophys. Res. Solid Earth 101, 2847–2857 (1996).


    Google Scholar
     

  • Stracke, A. et al. Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Planet. Sci. Lett. 308, 359–368 (2011).

    CAS 
    ADS 

    Google Scholar
     

  • Lassiter, J. C., Byerly, B. L., Snow, J. E. & Hellebrand, E. Constraints from Os-isotope variations on the origin of Lena Trough abyssal peridotites and implications for the composition and evolution of the depleted upper mantle. Earth Planet. Sci. Lett. 403, 178–187 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    CAS 
    ADS 

    Google Scholar
     

  • Gaillard, F., Scaillet, B., Pichavant, M. & Iacono-Marziano, G. The redox geodynamics linking basalts and their mantle sources through space and time. Chem. Geol. 418, 217–233 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3, 1–35 (2002).


    Google Scholar
     

  • Stolper, E. M., Shorttle, O., Antoshechkina, P. M. & Asimow, P. D. The effects of solid-solid phase equilibria on the oxygen fugacity of the upper mantle. Am. Mineral. 105, 1445–1471 (2020).

    ADS 

    Google Scholar
     

  • Davis, F. A. & Cottrell, E. Partitioning of Fe2O3 in peridotite partial melting experiments over a range of oxygen fugacities elucidates ferric iron systematics in mid-ocean ridge basalts and ferric iron content of the upper mantle. Contrib. Mineral. Petrol. 176, 67 (2021).

    CAS 
    ADS 

    Google Scholar
     

  • Gaetani, G. A. The behavior of Fe3+/ΣFe during partial melting of spinel lherzolite. Geochim. Cosmochim. Acta 185, 64–77 (2016).

    CAS 
    ADS 

    Google Scholar
     

  • Jennings, E. S. & Holland, T. J. B. A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56, 869–892 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • Gudmundsson, G. & Wood, B. J. Experimental tests of garnet peridotite oxygen barometry. Contrib. Mineral. Petrol. 119, 56–67 (1995).

    CAS 
    ADS 

    Google Scholar
     

  • Moussallam, Y. et al. Mantle plumes are oxidised. Earth Planet. Sci. Lett. 527, 115798 (2019).

    CAS 

    Google Scholar
     

  • Shorttle, O. et al. Fe-XANES analyses of Reykjanes Ridge basalts: implications for oceanic crust’s role in the solid Earth oxygen cycle. Earth Planet. Sci. Lett. 427, 272–285 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • Brounce, M., Stolper, E. & Eiler, J. The mantle source of basalts from Reunion Island is not more oxidized than the MORB source mantle. Contrib. Mineral. Petrol. 177, 1–18 (2022).

    ADS 

    Google Scholar
     

  • Herzberg, C. Depth and degree of melting of komatiites. J. Geophys. Res. Solid Earth 97, 4521–4540 (1992).

    CAS 

    Google Scholar
     

  • Arndt, N. T. & Lesher, C. M. in Encyclopedia of Geology 260–268 (Elsevier, 2004).

  • Berry, A. J., Danyushevsky, L. V., O’Neill, H. S. C., Newville, M. & Sutton, S. R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • Asafov, E. V. et al. Belingwe komatiites (2.7 Ga) originate from a plume with moderate water content, as inferred from inclusions in olivine. Chem. Geol. 478, 39–59 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • Sobolev, A. V. et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531, 628–632 (2016).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Birner, S. K., Cottrell, E., Davis, F. A. & Warren, J. M. Major elements EMPA method for pyroxene, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.60520/IEDA/113228 (2024).

  • Birner, S. K., Cottrell, E., Davis, F. A. & Warren, J. M. Major elements EMPA method for olivine, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.60520/IEDA/113227 (2024).

  • Birner, S. K., Cottrell, E., Davis, F. A. & Warren, J. M. Major elements EMPA method for spinel with secondary standards, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.60520/IEDA/113226 (2024).

  • Birner, S. K., Cottrell, E., Davis, F. A. & Warren, J. M. Spinel oxybarometry of abyssal peridotites from the Gakkel Ridge and Hess Deep, Version 1.0. Interdisciplinary Earth Data Alliance (IEDA) https://doi.org/10.60520/IEDA/113225 (2024).

  • Li, J., Kornprobst, J., Vielzeuf, D. & Fabriès, J. An improved experimental calibration of the olivine-spinel geothermometer. Chin. J. Geochem. 14, 68–77 (1995).

    CAS 

    Google Scholar
     

  • Montési, L. G. J. & Behn, M. D. Mantle flow and melting underneath oblique and ultraslow mid-ocean ridges. Geophys. Res. Lett. 34, L24307 (2007).

    ADS 

    Google Scholar
     

  • Frost, B. R. in Oxide Minerals: Petrologic and Magnetic Significance (ed. Lindsley, D. H.) 1–9 (De Gruyter, 1991).

  • Mattioli, G. S. & Wood, B. J. Magnetite activities across the MgAl2O4-Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity. Contrib. Mineral. Petrol. 98, 148–162 (1988).

    CAS 
    ADS 

    Google Scholar
     

  • Nell, J. & Wood, B. J. Thermodynamic properties in a multicomponent solid solution involving cation disorder; Fe3O4-MgFe2O4-FeAl2O4-MgAl2O4 spinels. Am. Mineral. 74, 1000–1015 (1989).

    CAS 

    Google Scholar
     

  • Sack, R. O. & Ghiorso, M. S. An internally consistent model for the thermodynamic properties of Fe–Mg–titanomagnetite–aluminate spinels. Contrib. Mineral. Petrol. 106, 474–505 (1991).

    CAS 
    ADS 

    Google Scholar
     

  • Sack, R. O. & Ghiorso, M. S. Chromian spinels as petrogenetic indicators: thermodynamics and petrological applications. Am. Mineral. 76, 827–847 (1991).

    CAS 

    Google Scholar
     

  • Birner, S. K. et al. Forearc peridotites from Tonga record heterogeneous oxidation of the mantle following subduction initiation. J. Petrol. 58, 1755–1780 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • Smith, P. M. & Asimow, P. D. Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem. Geophys. Geosyst. 6, Q02004 (2005).

    ADS 

    Google Scholar
     

  • Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    CAS 
    ADS 

    Google Scholar
     

  • Canil, D. et al. Ferric iron in peridotites and mantle oxidation states. Earth Planet. Sci. Lett. 123, 205–220 (1994).

    CAS 
    ADS 

    Google Scholar
     

  • Kress, V. C. & Carmichael, I. S. E. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 108, 82–92 (1991).

    CAS 
    ADS 

    Google Scholar
     

  • Langmuir, C. H., Klein, E. M. & Plank, T. Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Geophys. Monogr. 71, 183–280 (1992).

    ADS 

    Google Scholar
     

  • Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).

    CAS 
    ADS 

    Google Scholar
     

  • Falloon, T. J., Green, D. H., Danyushevsky, L. V. & McNeill, A. W. The composition of near-solidus partial melts of fertile peridotite at 1 and 1·5 GPa: implications for the petrogenesis of MORB. J. Petrol. 49, 591–613 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • Hirschmann, M. M. et al. Library of Experimental Phase Relations (LEPR): a database and Web portal for experimental magmatic phase equilibria data. Geochem. Geophys. Geosyst. 9, Q03011 (2008).

    ADS 

    Google Scholar
     

  • Borisov, A., Behrens, H. & Holtz, F. Ferric/ferrous ratio in silicate melts: a new model for 1 atm data with special emphasis on the effects of melt composition. Contrib. Mineral. Petrol. 173, 98 (2018).

    ADS 

    Google Scholar
     

  • O’Neill, H. S. C. et al. An experimental determination of the effect of pressure on the Fe3+/ΣFe ratio of an anhydrous silicate melt to 3.0 GPa. Am. Mineral. 91, 404–412 (2006).

    ADS 

    Google Scholar
     

  • Zhang, H. L., Hirschmann, M. M., Cottrell, E. & Withers, A. C. Effect of pressure on Fe3+/ΣFe ratio in a mafic magma and consequences for magma ocean redox gradients. Geochim. Cosmochim. Acta 204, 83–103 (2017).

    CAS 
    ADS 

    Google Scholar
     

  • Hirschmann, M. M. Magma oceans, iron and chromium redox, and the origin of comparatively oxidized planetary mantles. Geochim. Cosmochim. Acta 328, 221–241 (2022).

    CAS 
    ADS 

    Google Scholar
     

  • Deng, J., Du, Z., Karki, B. B., Ghosh, D. B. & Lee, K. K. M. A magma ocean origin to divergent redox evolutions of rocky planetary bodies and early atmospheres. Nat. Commun. 11, 2007 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Witt-Eickschen, G. & O’Neill, H. S. C. The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem. Geol. 221, 65–101 (2005).

    CAS 
    ADS 

    Google Scholar
     

  • Canil, D. & O’Neill, H. S. C. Distribution of ferric iron in some upper-mantle assemblages. J. Petrol. 37, 609–635 (1996).

    CAS 
    ADS 

    Google Scholar
     

  • Dyar, M. D., Mcguire, A. V. & Harrell, M. D. Crystal chemistry of iron in two styles of metasomatism in the upper mantle. Geochim. Cosmochim. Acta 56, 2579–2586 (1992).

    CAS 
    ADS 

    Google Scholar
     

  • Dyar, M. D., McGuire, A. V. & Ziegler, R. D. Redox equilibria and crystal chemistry of coexisting minerals from spinel lherzolite mantle xenoliths. Am. Mineral. 74, 969–980 (1989).

    CAS 

    Google Scholar
     

  • Hao, X.-L. & Li, Y.-L. 57Fe Mössbauer spectroscopy of mineral assemblages in mantle spinel lherzolites from Cenozoic alkali basalt, eastern China: petrological applications. Lithos 156–159, 112–119 (2013).

    ADS 

    Google Scholar
     

  • Lazarov, M., Woodland, A. B. & Brey, G. P. Thermal state and redox conditions of the Kaapvaal mantle: a study of xenoliths from the Finsch mine, South Africa. Lithos 112, 913–923 (2009).

    ADS 

    Google Scholar
     

  • Luth, R. W. & Canil, D. Ferric iron in mantle-derived pyroxenes and a new oxybarometer for the mantle. Contrib. Mineral. Petrol. 113, 236–248 (1993).

    CAS 
    ADS 

    Google Scholar
     

  • McGuire, A. V., Dyar, M. D. & Nielson, J. E. Metasomatic oxidation of upper mantle periodotite. Contrib. Mineral. Petrol. 109, 252–264 (1991).

    CAS 
    ADS 

    Google Scholar
     

  • Nimis, P., Goncharov, A., Ionov, D. A. & McCammon, C. Fe3+ partitioning systematics between orthopyroxene and garnet in mantle peridotite xenoliths and implications for thermobarometry of oxidized and reduced mantle rocks. Contrib. Mineral. Petrol. 169, 6 (2015).

    ADS 

    Google Scholar
     

  • Woodland, A. B. Ferric iron contents of clinopyroxene from cratonic mantle and partitioning behaviour with garnet. Lithos 112, 1143–1149 (2009).

    ADS 

    Google Scholar
     

  • Woodland, A. B., Kornprobst, J. & Tabit, A. Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 89, 222–241 (2006).

    CAS 
    ADS 

    Google Scholar
     

  • Woodland, A. B. & Peltonen, P. in Proceedings of the 7th International Kimberlite Conference (P. H. Nixon volume) 904–911 (Red Roof Design, 1999).

  • Dasgupta, R., Hirschmann, M. M. & Smith, N. D. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093–2124 (2007).

    CAS 
    ADS 

    Google Scholar
     

  • Davis, F. A. & Hirschmann, M. M. The effects of K2O on the compositions of near-solidus melts of garnet peridotite at 3 GPa and the origin of basalts from enriched mantle. Contrib. Mineral. Petrol. 166, 1029–1046 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • Davis, F. A., Humayun, M., Hirschmann, M. M. & Cooper, R. S. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochim. Cosmochim. Acta 104, 232–260 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • Draper, D. S. & Johnston, A. D. Anhydrous PT phase relations of an Aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of arc high-alumina basalts. Contrib. Mineral. Petrol. 112, 501–519 (1992).

    CAS 
    ADS 

    Google Scholar
     

  • Gaetani, G. A. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Mineral. Petrol. 131, 323–346 (1998).

    CAS 
    ADS 

    Google Scholar
     

  • Grove, T. L., Holbig, E. S., Barr, J. A., Till, C. B. & Krawczynski, M. J. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite. Contrib. Mineral. Petrol. 166, 887–910 (2013).

    CAS 
    ADS 

    Google Scholar
     

  • Kinzler, R. J. Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid‐ocean ridge basalt petrogenesis. J. Geophys. Res. Solid Earth 102, 853–874 (1997).

    CAS 

    Google Scholar
     

  • Longhi, J. Some phase equilibrium systematics of lherzolite melting: I. Geochem. Geophys. Geosyst. 3, 1–33 (2002).


    Google Scholar
     

  • Mallmann, G. & O’Neill, H. S. C. The effect of oxygen fugacity on the partitioning of Re between crystals and silicate melt during mantle melting. Geochim. Cosmochim. Acta 71, 2837–2857 (2007).

    CAS 
    ADS 

    Google Scholar
     

  • Mercer, C. N. & Johnston, A. D. Experimental studies of the PT–H2O near-liquidus phase relations of basaltic andesite from North Sister Volcano, High Oregon Cascades: constraints on lower-crustal mineral assemblages. Contrib. Mineral. Petrol. 155, 571–592 (2008).

    CAS 
    ADS 

    Google Scholar
     

  • Novella, D. et al. The distribution of H2O between silicate melt and nominally anhydrous peridotite and the onset of hydrous melting in the deep upper mantle. Earth Planet. Sci. Lett. 400, 1–13 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994).

    CAS 
    ADS 

    Google Scholar
     

  • Bartels, K. S., Kinzler, R. J. & Grove, T. L. High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib. Mineral. Petrol. 108, 253–270 (1991).

    CAS 
    ADS 

    Google Scholar
     

  • Bulatov, V. K., Girnis, A. V. & Brey, G. P. Experimental melting of a modally heterogeneous mantle. Mineral. Petrol. 75, 131–152 (2002).

    CAS 
    ADS 

    Google Scholar
     

  • Falloon, T. J., Green, D. H., O’Neill, H. S. C. & Hibberson, W. O. Experimental tests of low degree peridotite partial melt compositions: implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth Planet. Sci. Lett. 152, 149–162 (1997).

    CAS 
    ADS 

    Google Scholar
     

  • Falloon, T. J. & Danyushevsky, L. Melting of refractory mantle at 1·5, 2 and 2·5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J. Petrol. 41, 257–283 (2000).

    CAS 
    ADS 

    Google Scholar
     

  • Falloon, T. J., Danyushevsky, L. V. & Green, D. H. Peridotite melting at 1 GPa: reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments. J. Petrol. 42, 2363–2390 (2001).

    CAS 
    ADS 

    Google Scholar
     

  • Falloon, T. J., Green, D. H., Danyushevsky, L. V. & Faul, U. H. Peridotite melting at 1.0 and 1.5 GPa: an experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. J. Petrol. 40, 1343–1375 (1999).

    CAS 
    ADS 

    Google Scholar
     

  • Gaetani, G. A., Kent, A. J. R., Grove, T. L., Hutcheon, I. D. & Stolper, E. M. Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib. Mineral. Petrol. 145, 391–405 (2003).

    CAS 
    ADS 

    Google Scholar
     

  • Grove, T. L. et al. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Mineral. Petrol. 145, 515–533 (2003).

    CAS 
    ADS 

    Google Scholar
     

  • Kinzler, R. J. & Grove, T. L. Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J. Geophys. Res. 97, 6885 (1992).

    ADS 

    Google Scholar
     

  • Laporte, D., Toplis, M. J., Seyler, M. & Devidal, J.-L. A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib. Mineral. Petrol. 146, 463–484 (2004).

    CAS 
    ADS 

    Google Scholar
     

  • Laubier, M., Grove, T. L. & Langmuir, C. H. Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet. Sci. Lett. 392, 265–278 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • Liu, X. & O’Neill, H. Partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2 ± K2O at 1·1 GPa. J. Petrol. 45, 1339–1368 (2004).

    CAS 
    ADS 

    Google Scholar
     

  • Liu, X. & O’Neill, H. The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2–Cr2O3 at 1·1 GPa. J. Petrol. 45, 2261–2286 (2004).

    CAS 
    ADS 

    Google Scholar
     

  • Pichavant, M., Mysen, B. O. & Macdonald, R. Source and H2O content of high-MgO magmas in island arc settings: an experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim. Cosmochim. Acta 66, 2193–2209 (2002).

    CAS 
    ADS 

    Google Scholar
     

  • Pickering-Witter, J. & Johnston, A. D. The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib. Mineral. Petrol. 140, 190–211 (2000).

    CAS 
    ADS 

    Google Scholar
     

  • Robinson, J. A. C., Wood, B. J. & Blundy, J. D. The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet. Sci. Lett. 155, 97–111 (1998).

    CAS 
    ADS 

    Google Scholar
     

  • Salters, V. J. M., Longhi, J. E. & Bizimis, M. Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochem. Geophys. Geosyst. 3, 1–23 (2002).


    Google Scholar
     

  • Schwab, B. E. & Johnston, A. D. Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J. Petrol. 42, 1789–1811 (2001).

    CAS 
    ADS 

    Google Scholar
     

  • Villiger, S. The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1·0 GPa. J. Petrol. 45, 2369–2388 (2004).

    CAS 
    ADS 

    Google Scholar
     

  • Wasylenki, L. E., Baker, M. B., Kent, A. J. R. & Stolper, E. M. Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J. Petrol. 44, 1163–1191 (2003).

    CAS 
    ADS 

    Google Scholar
     



  • Source link