• Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Phil. Trans. R. Soc. B 368, 20130164 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320, 889–892 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, M. et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl. Acad. Sci. USA 116, 7760–7765 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dodds, W. K. & Smith, V. H. Nitrogen, phosphorus and eutrophication in streams. Inland Waters 6, 155–164 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Humbert, J. Y., Dwyer, J. M., Andrey, A. & Arlettaz, R. Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Glob. Change Biol. 22, 110–120 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Stocker, B. D. et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Change 3, 666–672 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zaehle, S., Ciais, P., Friend, A. D. & Prieur, V. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat. Geosci. 4, 601–605 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hauglustaine, D. A., Balkanski, Y. & Schulz, M. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate. Atmos. Chem. Phys. 14, 11031–11063 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Thornhill, G. D. et al. Effective radiative forcing from emissions of reactive gases and aerosols—a multi-model comparison. Atmos. Chem. Phys. 21, 853–874 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peng, S. et al. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 612, 477–482 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, X. et al. The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nat. Commun. 12, 5021 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reay, D. S., Dentener, F., Smith, P., Grace, J. & Feely, R. A. Global nitrogen deposition and carbon sinks. Nat. Geosci. 1, 430–437 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fleischer, K. et al. The contribution of nitrogen deposition to the photosynthetic capacity of forests. Glob. Biogeochem. Cycles 27, 187–199 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Derwent, R. G. et al. Radiative forcing from surface NOx emissions: spatial and seasonal variations. Clim. Change 88, 385–401 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Allen, M. R. et al. New use of global warming potentials to compare cumulative and short-lived climate pollutants. Nat. Clim. Change 6, 773–776 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Erisman, J. W., Galloway, J., Seitzinger, S., Bleeker, A. & Butterbach-Bahl, K. Reactive nitrogen in the environment and its effect on climate change. Curr. Opin. Environ. Sustain. 3, 281–290 (2011).

    Article 

    Google Scholar
     

  • Pinder, R. W. et al. Climate change impacts of US reactive nitrogen. Proc. Natl. Acad. Sci. USA 109, 7671–7675 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butterbach-Bahl, K. et al. in The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (eds Bleeker, A. et al.) 434–462 (Cambridge Univ. Press, 2011).

  • Shi, Y., Cui, S., Ju, X., Cai, Z. & Zhu, Y. Impacts of reactive nitrogen on climate change in China. Sci. Rep. 5, 8118 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gong, C., Kou-Giesbrecht, S. & Zaehle, S. Anthropogenic-driven perturbations on nitrogen cycles and interactions with climate changes. Curr. Opin. Green Sustain. Chem. 46, 100897 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Martin, S. T. et al. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing. Atmos. Chem. Phys. 4, 183–214 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ma, R. et al. Data-driven estimates of fertilizer-induced soil NH3, NO and N2O emissions from croplands in China and their climate change impacts. Glob. Change Biol. 28, 1008–1022 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Li, J. et al. Spatiotemporal variability of fire effects on soil carbon and nitrogen: a global meta-analysis. Glob. Change Biol. 27, 4196–4206 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meyerholt, J., Sickel, K. & Zaehle, S. Ensemble projections elucidate effects of uncertainty in terrestrial nitrogen limitation on future carbon uptake. Glob. Change Biol. 26, 3978–3996 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Tian, H. et al. Global nitrous oxide budget 1980–2020. Earth Syst. Sci. Data Discuss. 2023, 1–98 (2023).


    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2021. Earth Syst. Sci. Data 14, 1917–2005 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weng, H. et al. Global high-resolution emissions of soil NOx, sea salt aerosols and biogenic volatile organic compounds. Sci. Data 7, 148 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDuffie, E. E. et al. A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS). Earth Syst. Sci. Data 12, 3413–3442 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Evangeliou, N. et al. 10-year satellite-constrained fluxes of ammonia improve performance of chemistry transport models. Atmos. Chem. Phys. 21, 4431–4451 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luo, Z. et al. Estimating global ammonia (NH3) emissions based on IASI observations from 2008 to 2018. Atmos. Chem. Phys. 22, 10375–10388 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, L. et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl. Acad. Sci. USA 119, e2121998119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Etminan, M., Myhre, G., Highwood, E. J. & Shine, K. P. Radiative forcing of carbon dioxide, methane and nitrous oxide: a significant revision of the methane radiative forcing. Geophys. Res. Lett. 43, 12614–12623 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, F. et al. Global water use efficiency saturation due to increased vapor pressure deficit. Science 381, 672–677 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Nitrogen deposition to the United States: distribution, sources and processes. Atmos. Chem. Phys. 12, 4539–4554 (2012).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Travis, K. R. et al. Why do models overestimate surface ozone in the Southeast United States? Atmos. Chem. Phys. 16, 13561–13577 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dutta, I. & Heald, C. L. Exploring deposition observations of oxidized sulfur and nitrogen as a constraint on emissions in the United States. J. Geophys. Res. Atmos. 128, e2023JD039610 (2023).

  • Kroll, J. H., Ng, N. L., Murphy, S. M., Flagan, R. C. & Seinfeld, J. H. Secondary organic aerosol formation from isoprene photooxidation. Environ. Sci. Technol. 40, 1869–1877 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ng, N. L. et al. Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes. Atmos. Chem. Phys. 7, 5159–5174 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ng, N. L. et al. Secondary organic aerosol formation from m-xylene, toluene and benzene. Atmos. Chem. Phys. 7, 3909–3922 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, H. et al. History of anthropogenic nitrogen inputs (HaNi) to the terrestrial biosphere: a 5 arcmin resolution annual dataset from 1860 to 2019. Earth Syst. Sci. Data 14, 4551–4568 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 9, 181–192 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tian, H. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution and uncertainty. Glob. Change Biol. 25, 640–659 (2019).

    Article 
    ADS 

    Google Scholar
     

  • van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ballantyne, A. P., Alden, C. B., Miller, J. B., Tans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Y. et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change 10, 138–142 (2020).

  • Canadell, J. G. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 673–816 (Cambridge Univ. Press, 2021).

  • Olivié, D., Höglund-Isaksson, L., Klimont, Z. & von Salzen, K. Box model for calculation of global atmospheric methane concentration. Zenodo https://doi.org/10.5281/zenodo.5293940 (2021).

  • IPCC. AR4 Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  • IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • IPCC. Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) (Cambridge Univ. Press 2001).

  • Bey, I. et al. Global modeling of tropospheric chemistry with assimilated meteorology: model description and evaluation. J. Geophys. Res. Atmos. 106, 23073–23095 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M. & Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy. J. Geophys. Res. Atmos. https://doi.org/10.1029/2003jd004473 (2004).

  • van Donkelaar, A. et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ. Health Perspect. 118, 847–855 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, K. et al. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 116, 422–427 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fountoukis, C. & Nenes, A. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4+–Na+–SO42−–NO3–Cl–H2O aerosols. Atmos. Chem. Phys. 7, 4639–4659 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heald, C. L. et al. Contrasting the direct radiative effect and direct radiative forcing of aerosols. Atmos. Chem. Phys. 14, 5513–5527 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jena, C. et al. Inter-comparison of different NOx emission inventories and associated variation in simulated surface ozone in Indian region. Atmos. Environ. 117, 61–73 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ding, J. et al. Intercomparison of NOx emission inventories over East Asia. Atmos. Chem. Phys. 17, 10125–10141 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Murray, L. T., Fiore, A. M., Shindell, D. T., Naik, V. & Horowitz, L. W. Large uncertainties in global hydroxyl projections tied to fate of reactive nitrogen and carbon. Proc. Natl. Acad. Sci. USA 118, e2115204118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szopa, S. V. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 817–922 (Cambridge Univ. Press, 2021).

  • Liu, L. & Greaver, T. L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, X. et al. Ammonia emissions may be substantially underestimated in China. Environ. Sci. Technol. 51, 12089–12096 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lessmann, M., Ros, G. H., Young, M. D. & de Vries, W. Global variation in soil carbon sequestration potential through improved cropland management. Glob. Change Biol. 28, 1162–1177 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ren, J., Guo, F. F. & Xie, S. D. Diagnosing ozone–NOx–VOC sensitivity and revealing causes of ozone increases in China based on 2013–2021 satellite retrievals. Atmos. Chem. Phys. 22, 15035–15047 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Steudler, P. A., Bowden, R. D., Melillo, J. M. & Aber, J. D. Influence of nitrogen-fertilization on methane uptake in temperate forest soils. Nature 341, 314–316 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Sitch, S., Cox, P. M., Collins, W. J. & Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1087 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lombardozzi, D., Levis, S., Bonan, G. & Sparks, J. P. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance. Biogeosciences 9, 3113–3130 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Simon, H., Reff, A., Wells, B., Xing, J. & Frank, N. Ozone trends across the United States over a period of decreasing NOx and VOC emissions. Environ. Sci. Technol. 49, 186–195 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yue, X. & Unger, N. The Yale Interactive terrestrial Biosphere model version 1.0: description, evaluation and implementation into NASA GISS ModelE2. Geosci. Model Dev. 8, 2399–2417 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl. Sci. Rev. 8, nwaa137 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, M. et al. Development and evaluation of E3SM-MOSAIC: dpatial fistributions and tadiative rffects of nitrate aerosol. J. Adv. Model. Earth Syst. 14, e2022MS003157 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, K. et al. Insights into the significant increase in ozone during COVID-19 in a typical urban city of China. Atmos. Chem. Phys. 22, 4853–4866 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Paulot, F. et al. Global oceanic emission of ammonia: constraints from seawater and atmospheric observations. Glob. Biogeochem. Cycles 29, 1165–1178 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Xia, N. et al. Effects of nitrogen addition on soil methane uptake in global forest biomes. Environ. Pollut. 264, 114751 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q., Peng, C., Zhang, J., Li, Y. & Song, X. Nitrogen addition decreases methane uptake caused by methanotroph and methanogen imbalances in a Moso bamboo forest. Sci. Rep. 11, 5578 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, W., Liu, X., Houlton, B. Z. & Liu, C. Isotopic constraints confirm the significant role of microbial nitrogen oxides emissions from the land and ocean environment. Natl. Sci. Rev. 9, nwac106 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bian, H. et al. Investigation of global particulate nitrate from the AeroCom phase III experiment. Atmos. Chem. Phys. 17, 12911–12940 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • An, Q. et al. The development of an atmospheric aerosol/chemistry-climate model, BCC_AGCM_CUACE2.0 and simulated effective radiative forcing of nitrate aerosols. J. Adv. Model. Earth Syst. 11, 3816–3835 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 923–1054 (Cambridge Univ. Press, 2021).

  • Zaveri, R. A. et al. Development and evaluation of chemistry-aerosol-climate model CAM5-Chem-MAM7-MOSAIC: global atmospheric distribution and radiative effects of nitrate aerosol. J. Adv. Model. Earth Syst. 13, e2020MS002346 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schulte-Uebbing, L. F., Ros, G. H. & de Vries, W. Experimental evidence shows minor contribution of nitrogen deposition to global forest carbon sequestration. Glob. Change Biol. 28, 899–917 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kou-Giesbrecht, S. et al. Evaluating nitrogen cycling in terrestrial biosphere models: a disconnect between the carbon and nitrogen cycles. Earth Syst. Dynam. 14, 767–795 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Y. & Meyer, T. J. A route to renewable energy triggered by the Haber–Bosch process. Chem 5, 496–497 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peng, Y., Chen, H. Y. H. & Yang, Y. Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Func. Ecol. 34, 1979–1990 (2020).

    Article 

    Google Scholar
     

  • He, N. et al. Global patterns of nitrogen saturation in forests. Preprint at https://doi.org/10.21203/rs.3.rs-3559857/v1 (2023).

  • Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mogollon, J. M. et al. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environ. Res. Lett. 13, 044008 (2018).

  • Unger, N., Shindell, D. T., Koch, D. M. & Streets, D. G. Air pollution radiative forcing from specific emissions sectors at 2030. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007jd008683 (2008).

  • Chen, Y. J. et al. Investigating the linear dependence of direct and indirect radiative forcing on emission of carbonaceous aerosols in a global climate model. J. Geophys. Res. Atmos. 123, 1657–1672 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gong, C. Data for ‘Global net climate effects of anthropogenic reactive nitrogen’. Zenodo 10.5281/zenodo.10032973 (2024).

  • Gong, C. Scripts for ‘Global net climate effects of anthropogenic reactive nitrogen’. Zenodo https://doi.org/10.5281/zenodo.11179127 (2024).

  • Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10, 2057–2116 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link


    administrator