• Patel, S. N. et al. Morphology controls the thermoelectric power factor of a doped semiconducting polymer. Sci. Adv. 3, e1700434 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ding, J. M. et al. Selenium-substituted diketopyrrolopyrrole polymer for high-performance p-type organic thermoelectric materials. Angew. Chem. Int. Ed. 58, 18994–18999 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Han, J. F. et al. Blended conjugated host and unconjugated dopant polymers towards n-type all-polymer conductors and high-ZT thermoelectrics. Angew. Chem. Int. Ed. 62, e202219313 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. Y. et al. Triggering ZT to 0.40 by engineering orientation in one polymeric semiconductor. Adv. Mater. 35, e2208215 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, J. et al. N-type organic thermoelectrics: demonstration of ZT > 0.3. Nat. Commun. 11, 5694 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Amphipathic side chain of a conjugated polymer optimizes dopant location toward efficient n-type organic thermoelectrics. Adv. Mater. 33, 2006694 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. & Takimiya, K. Naphthodithiophenediimide-bithiopheneimide copolymers for high-performance n-type organic thermoelectrics: significant impact of backbone orientation on conductivity and thermoelectric performance. Adv. Mater. 32, 2002060 (2020).

    Article 

    Google Scholar
     

  • Kim, G., Shao, L., Zhang, K. & Pipe, K. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bubnova, O. et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429–433 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, Q. et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, C. L. et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 14, 622–627 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Q. Y. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Y. et al. Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance. Nat. Nanotechnol. 18, 1281–1288 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, B. et al. High figure-of-merit and power generation in high-entropy GeTe-based thermoelectrics. Science 377, 208–213 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, B. B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Roychowdhury, S. et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 371, 722–727 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figure of merit. Nature 413, 597–602 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wan, C. et al. Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Sci. Technol. Adv. Mater. 11, 044306 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y., Li, Z., Su, Y., Wu, C. & Xie, Y. Ultralow in-plane thermal conductivity in 2D magnetic mosaic superlattices for enhanced thermoelectric performance. ACS Nano 16, 11152–11160 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, L. D. et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. R. et al. Lattice plainification advances highly effective SnSe crystalline thermoelectrics. Science 380, 841–846 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, L. Z. et al. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 375, 1385–1389 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Phil. Mag. B 79, 1715–1731 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transf. 119, 220–229 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Chen, G. Non-Fourier phonon heat conduction at the microscale and nanoscale. Nat. Rev. Phys. 3, 555–569 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shi, W., Shuai, Z. & Wang, D. Tuning thermal transport in chain‐oriented conducting polymers for enhanced thermoelectric efficiency: a computational study. Adv. Funct. Mater. 27, 1702847 (2017).

    Article 

    Google Scholar
     

  • Kim, M. J. et al. Universal three-dimensional crosslinker for all-photopatterned electronics. Nat. Commun. 11, 1520 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Png, R. Q. et al. High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains. Nat. Mater. 9, 152–158 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, Y. H. et al. Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 13, 2369 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, Z. C. et al. Film‐depth‐dependent light reflection spectroscopy for photovoltaics and transistors. Adv. Mater. Interfaces 8, 2101476 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. H. et al. Correlations between performance of organic solar cells and film‐depth‐dependent optical and electronic variations. Adv. Opt. Mater. 7, 1900152 (2019).

    Article 

    Google Scholar
     

  • Nowak, D. et al. Nanoscale chemical imaging by photoinducedforce microscopy. Sci. Adv. 2, e150157 (2016).

    Article 

    Google Scholar
     

  • Jahng, J., Potma, E. O. & Lee, E. S. Nanoscale spectroscopic origins of photoinduced tip-sample force in the midinfrared. Proc. Natl Acad. Sci. USA 116, 26359–26366 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, K. et al. Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length. Nat. Commun. 12, 468 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, K. et al. Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture. Nat. Energy 7, 1076–1086 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, Y. et al. A review on principles and applications of scanning thermal microscopy (SThM). Adv. Funct. Mater. 30, 1900892 (2019).

    Article 

    Google Scholar
     

  • Rojo, M. M. et al. Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials. Nanoscale 6, 7858–7865 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57, 958–973 (1998).

    Article 

    Google Scholar
     

  • Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. & Tien, C. L. Thermal conductivities of quantum well structures. J. Thermophys. Heat Trans. 7, 311–318 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luckyanova, M. N. et al. Phonon localization in heat conduction. Sci. Adv. 4, eaat9460 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, S. et al. High-performance and ecofriendly organic thermoelectrics enabled by n-type polythiophene derivatives with doping-induced molecular order. Adv. Mater. 36, 2309679 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Hong, S. et al. Wearable thermoelectrics for personalized thermoregulation. Sci. Adv. 5, eaaw0536 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, W. et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 7, eabe0586 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nan, K. et al. Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices. Sci. Adv. 4, eaau5849 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link


    administrator