Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).
Missias, A. C., Chu, G. C., Klocke, B. J., Sanes, J. R. & Merlie, J. P. Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR γ-to-ε switch. Dev. Biol. 179, 223–238 (1996).
Mishina, M. et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411 (1986).
Sakmann, B. & Brenner, H. R. Change in synaptic channel gating during neuromuscular development. Nature 276, 401–402 (1978).
Hesselmans, L. F. G. M., Jennekens, F. G. I., Van Den Oord, C. J. M., Veldman, H. & Vincent, A. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anatomical Rec. 236, 553–562 (1993).
Liu, Y. et al. Essential roles of the acetylcholine receptor γ-subunit in neuromuscular synaptic patterning. Development 135, 1957–1967 (2008).
Jaramillo, F., Vicini, S. & Schuetze, S. M. Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle. Nature 335, 66–68 (1988).
Kidokoro, Y. & Saito, M. Early cross-striation formation in twitching Xenopus myocytes in culture. Proc. Natl Acad. Sci. USA 85, 1978–1982 (1988).
Zhang, B. G. X. et al. Combination of agrin and laminin increase acetylcholine receptor clustering and enhance functional neuromuscular junction formation In vitro. Dev. Neurobiol. 76, 551–565 (2016).
Madhavan, R. & Peng, H. B. A synaptic balancing act: local and global signaling in the clustering of ACh receptors at vertebrate neuromuscular junctions. J. Neurocytol. 32, 685–696 (2003).
Cetin, H., Beeson, D., Vincent, A. & Webster, R. The structure, function, and physiology of the fetal and adult acetylcholine receptor in muscle. Front. Mol. Neurosci. 13, 581097 (2020).
Rimer, M., Mathiesen, I., Lømo, T. & McMahan, U. J. γ-AChR/ε-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle. Mol. Cell. Neurosci. 9, 254–263 (1997).
Nayak, T. K., Chakraborty, S., Zheng, W. & Auerbach, A. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors. Nat. Commun. 7, 11352 (2016).
Nayak, T. K. et al. Functional differences between neurotransmitter binding sites of muscle acetylcholine receptors. Proc. Natl Acad. Sci. USA 111, 17660–17665 (2014).
Nayak, T. K. & Auerbach, A. Asymmetric transmitter binding sites of fetal muscle acetylcholine receptors shape their synaptic response. Proc. Natl Acad. Sci. USA 110, 13654–13659 (2013).
Bouzat, C., Bren, N. & Sine, S. M. Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors. Neuron 13, 1395–1402 (1994).
Herlitze, S., Villarroel, A., Witzemann, V., Koenen, M. & Sakmann, B. Structural determinants of channel conductance in fetal and adult rat muscle acetylcholine receptors. J. Physiol. 492, 775–787 (1996).
Rubin, L. L., Schuetze, S. M., Weill, C. L. & Fischbach, G. D. Regulation of acetylcholinesterase appearance at neuromuscular junctions in vitro. Nature 283, 264–267 (1980).
Lomo, T., Massoulie, J. & Vigny, M. Stimulation of denervated rat soleus muscle with fast and slow activity patterns induces different expression of acetylcholinesterase molecular forms. J. Neurosci. 5, 1180 (1985).
Takahashi, M. et al. Spontaneous muscle action potentials fail to develop without fetal‐type acetylcholine receptors. EMBO Rep. 3, 674–681-681 (2002).
Cetin, H. et al. Rapsyn facilitates recovery from desensitization in fetal and adult acetylcholine receptors expressed in a muscle cell line. J. Physiol. 597, 3713–3725 (2019).
Matthews-Bellinger, J. & Salpeter, M. M. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J. Physiol. 279, 197–213 (1978).
Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).
Rahman, M. M. et al. Structure of the native muscle-type nicotinic receptor and inhibition by snake venom toxins. Neuron 106, 952–962.e955 (2020).
Takai, T. et al. Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315, 761–764 (1985).
Yang, K. et al. CHRNE compound heterozygous mutations in congenital myasthenic syndrome: a case report. Medicine 97, e0347 (2018).
Rodríguez Cruz, P. M., Palace, J. & Beeson, D. The neuromuscular junction and wide heterogeneity of congenital myasthenic syndromes. Int. J. Mol. Sci. 19, 1677 (2018).
Gilhus, N. E. in Handbook of Clinical Neurology Vol. 195 (ed. Younger, D. S.) 635–652 (Elsevier, 2023).
Rahman, M. M. et al. Structural mechanism of muscle nicotinic receptor desensitization and block by curare. Nat. Struct. Mol. Biol. 29, 386–394 (2022).
Zarkadas, E. et al. Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. Neuron 110, 1358–1370.e1355 (2022).
Lindstrom, J. M. & Lambert, E. H. Content of acetylcholine receptor and antibodies bound to receptor in myasthenia gravis, experimental autoimmune myasthenia gravis, and Eaton‐Lambert syndrome. Neurology 28, 130–130 (1978).
Einarson, B., Gullick, W., Conti-Tronconi, B., Ellisman, M. & Lindstrom, J. Subunit composition of bovine muscle acetylcholine receptor. Biochemistry 21, 5295–5302 (1982).
Nys, M. et al. The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. Nat. Commun. 13, 4543 (2022).
Moore, M. A. & McCarthy, M. P. Snake venom toxins, unlike smaller antagonists, appear to stabilize a resting state conformation of the nicotinic acetylcholine receptor. Biochim. Biophys. Acta 1235, 336–342 (1995).
Polak, R. L., Sellin, L. C. & Thesleff, S. Acetylcholine content and release in denervated or botulinum poisoned rat skeletal muscle. J. Physiol. 319, 253–259 (1981).
Rich, M. M. & Pinter, M. J. Sodium channel inactivation in an animal model of acute quadriplegic myopathy. Ann. Neurol. 50, 26–33 (2001).
Fucile, S., Sucapane, A., Grassi, F., Eusebi, F. & Engel, A. G. The human adult subtype ACh receptor channel has high Ca2+ permeability and predisposes to endplate Ca2+ overloading. J. Physiol. 573, 35–43 (2006).
Ragozzino, D., Barabino, B., Fucile, S. & Eusebi, F. Ca2+ permeability of mouse and chick nicotinic acetylcholine receptors expressed in transiently transfected human cells. J. Physiol. 507, 749–758 (1998).
Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988).
Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol. 346, 967–989 (2005).
Hansen, S. B., Wang, H.-L., Taylor, P. & Sine, S. M. An ion selectivity filter in the extracellular domain of Cys-loop receptors reveals determinants for ion conductance. J. Biol. Chem. 283, 36066–36070 (2008).
Gharpure, A. et al. Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor. Neuron 104, 501–511.e506 (2019).
Hussy, N., Lukas, W. & Jones, K. A. Functional properties of a cloned 5-hydroxytryptamine ionotropic receptor subunit: comparison with native mouse receptors. J. Physiol. 481, 311–323 (1994).
Walsh, R. M. et al. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 557, 261–265 (2018).
Tapia, L., Kuryatov, A. & Lindstrom, J. Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol. Pharmacol. 71, 769–776 (2007).
Dwyer, T. M., Adams, D. J. & Hille, B. The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75, 469–492 (1980).
Zhu, H. & Gouaux, E. Architecture and assembly mechanism of native glycine receptors. Nature 599, 513–517 (2021).
Liu, X. & Wang, W. Asymmetric gating of a human hetero-pentameric glycine receptor. Nat. Commun. 14, 6377 (2023).
Labarca, C. et al. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376, 514–516 (1995).
Filatov, G. N. & White, M. M. The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Mol. Pharmacol. 48, 379 (1995).
Engel, A. G., Shen, X.-M., Selcen, D. & Sine, S. M. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 14, 420–434 (2015).
Jahn, K. et al. Deactivation and desensitization of mouse embryonic- and adult-type nicotinic receptor channel currents. Neurosci. Lett. 307, 89–92 (2001).
Basak, S., Gicheru, Y., Rao, S., Sansom, M. S. P. & Chakrapani, S. Cryo-EM reveals two distinct serotonin-bound conformations of full-length 5-HT3A receptor. Nature 563, 270–274 (2018).
Noviello, C. M. et al. Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. Cell 184, 2121–2134.e2113 (2021).
Sine, S. M. et al. Naturally occurring mutations at the acetylcholine receptor binding site independently alter ACh binding and channel gating. J. Gen. Physiol. 120, 483–496 (2002).
Sine, S. M. et al. Mechanistic diversity underlying fast channel congenital myasthenic syndromes. Ann. N.Y. Acad. Sci. 998, 128–137 (2003).
Shen, X.-M. et al. Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating. Hum. Mutat. 37, 1051–1059 (2016).
Ealing, J. et al. Mutations in congenital myasthenic syndromes reveal an ε subunit C-terminal cysteine, C470, crucial for maturation and surface expression of adult AChR. Hum. Mol. Genet. 11, 3087–3096 (2002).
de la Rosa, G., Corrales-García, L. L., Rodriguez-Ruiz, X., López-Vera, E. & Corzo, G. Short-chain consensus alpha-neurotoxin: a synthetic 60-mer peptide with generic traits and enhanced immunogenic properties. Amino Acids 50, 885–895 (2018).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).
Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).
Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J 478, 4169–4185 (2021).
Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature, https://doi.org/10.1038/s41586-024-07215-4 (2024).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
Sievers, F. & Higgins, D. G. Clustal omega. Curr. Protoc. Bioinformatics 48, 3.13.11–13.13.16 (2014).
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graphics 14, 354–360 (1996).
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).
Morales-Perez, C. L., Noviello, C. M. & Hibbs, R. E. Manipulation of subunit stoichiometry in heteromeric membrane proteins. Structure 24, 797–805 (2016).
Basak, S. et al. Cryo-EM structure of 5-HT3A receptor in its resting conformation. Nat. Commun. 9, 514 (2018).
Shen, X.-M. et al. Mutations causing congenital myasthenia reveal principal coupling pathway in the acetylcholine receptor ε-subunit. JCI Insight 3, e97826 (2018).
Engel, A. G. et al. New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Hum. Mol. Genet. 5, 1217–1227 (1996).
Fidzianska, A., Ryniewicz, B., Shen, X.-M. & Engel, A. G. IBM-type inclusions in a patient with slow-channel syndrome caused by a mutation in the AChR epsilon subunit. Neuromuscul. Disord. 15, 753–759 (2005).