• Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Missias, A. C., Chu, G. C., Klocke, B. J., Sanes, J. R. & Merlie, J. P. Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR γ-to-ε switch. Dev. Biol. 179, 223–238 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishina, M. et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406–411 (1986).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sakmann, B. & Brenner, H. R. Change in synaptic channel gating during neuromuscular development. Nature 276, 401–402 (1978).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hesselmans, L. F. G. M., Jennekens, F. G. I., Van Den Oord, C. J. M., Veldman, H. & Vincent, A. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anatomical Rec. 236, 553–562 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Essential roles of the acetylcholine receptor γ-subunit in neuromuscular synaptic patterning. Development 135, 1957–1967 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jaramillo, F., Vicini, S. & Schuetze, S. M. Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle. Nature 335, 66–68 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kidokoro, Y. & Saito, M. Early cross-striation formation in twitching Xenopus myocytes in culture. Proc. Natl Acad. Sci. USA 85, 1978–1982 (1988).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. G. X. et al. Combination of agrin and laminin increase acetylcholine receptor clustering and enhance functional neuromuscular junction formation In vitro. Dev. Neurobiol. 76, 551–565 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Madhavan, R. & Peng, H. B. A synaptic balancing act: local and global signaling in the clustering of ACh receptors at vertebrate neuromuscular junctions. J. Neurocytol. 32, 685–696 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cetin, H., Beeson, D., Vincent, A. & Webster, R. The structure, function, and physiology of the fetal and adult acetylcholine receptor in muscle. Front. Mol. Neurosci. 13, 581097 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rimer, M., Mathiesen, I., Lømo, T. & McMahan, U. J. γ-AChR/ε-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle. Mol. Cell. Neurosci. 9, 254–263 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nayak, T. K., Chakraborty, S., Zheng, W. & Auerbach, A. Structural correlates of affinity in fetal versus adult endplate nicotinic receptors. Nat. Commun. 7, 11352 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayak, T. K. et al. Functional differences between neurotransmitter binding sites of muscle acetylcholine receptors. Proc. Natl Acad. Sci. USA 111, 17660–17665 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nayak, T. K. & Auerbach, A. Asymmetric transmitter binding sites of fetal muscle acetylcholine receptors shape their synaptic response. Proc. Natl Acad. Sci. USA 110, 13654–13659 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouzat, C., Bren, N. & Sine, S. M. Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors. Neuron 13, 1395–1402 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herlitze, S., Villarroel, A., Witzemann, V., Koenen, M. & Sakmann, B. Structural determinants of channel conductance in fetal and adult rat muscle acetylcholine receptors. J. Physiol. 492, 775–787 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rubin, L. L., Schuetze, S. M., Weill, C. L. & Fischbach, G. D. Regulation of acetylcholinesterase appearance at neuromuscular junctions in vitro. Nature 283, 264–267 (1980).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lomo, T., Massoulie, J. & Vigny, M. Stimulation of denervated rat soleus muscle with fast and slow activity patterns induces different expression of acetylcholinesterase molecular forms. J. Neurosci. 5, 1180 (1985).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi, M. et al. Spontaneous muscle action potentials fail to develop without fetal‐type acetylcholine receptors. EMBO Rep. 3, 674–681-681 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cetin, H. et al. Rapsyn facilitates recovery from desensitization in fetal and adult acetylcholine receptors expressed in a muscle cell line. J. Physiol. 597, 3713–3725 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matthews-Bellinger, J. & Salpeter, M. M. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J. Physiol. 279, 197–213 (1978).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Unwin, N. Acetylcholine receptor channel imaged in the open state. Nature 373, 37–43 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahman, M. M. et al. Structure of the native muscle-type nicotinic receptor and inhibition by snake venom toxins. Neuron 106, 952–962.e955 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takai, T. et al. Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature 315, 761–764 (1985).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, K. et al. CHRNE compound heterozygous mutations in congenital myasthenic syndrome: a case report. Medicine 97, e0347 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodríguez Cruz, P. M., Palace, J. & Beeson, D. The neuromuscular junction and wide heterogeneity of congenital myasthenic syndromes. Int. J. Mol. Sci. 19, 1677 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gilhus, N. E. in Handbook of Clinical Neurology Vol. 195 (ed. Younger, D. S.) 635–652 (Elsevier, 2023).

  • Rahman, M. M. et al. Structural mechanism of muscle nicotinic receptor desensitization and block by curare. Nat. Struct. Mol. Biol. 29, 386–394 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zarkadas, E. et al. Conformational transitions and ligand-binding to a muscle-type nicotinic acetylcholine receptor. Neuron 110, 1358–1370.e1355 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lindstrom, J. M. & Lambert, E. H. Content of acetylcholine receptor and antibodies bound to receptor in myasthenia gravis, experimental autoimmune myasthenia gravis, and Eaton‐Lambert syndrome. Neurology 28, 130–130 (1978).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Einarson, B., Gullick, W., Conti-Tronconi, B., Ellisman, M. & Lindstrom, J. Subunit composition of bovine muscle acetylcholine receptor. Biochemistry 21, 5295–5302 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nys, M. et al. The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. Nat. Commun. 13, 4543 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moore, M. A. & McCarthy, M. P. Snake venom toxins, unlike smaller antagonists, appear to stabilize a resting state conformation of the nicotinic acetylcholine receptor. Biochim. Biophys. Acta 1235, 336–342 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Polak, R. L., Sellin, L. C. & Thesleff, S. Acetylcholine content and release in denervated or botulinum poisoned rat skeletal muscle. J. Physiol. 319, 253–259 (1981).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rich, M. M. & Pinter, M. J. Sodium channel inactivation in an animal model of acute quadriplegic myopathy. Ann. Neurol. 50, 26–33 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fucile, S., Sucapane, A., Grassi, F., Eusebi, F. & Engel, A. G. The human adult subtype ACh receptor channel has high Ca2+ permeability and predisposes to endplate Ca2+ overloading. J. Physiol. 573, 35–43 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ragozzino, D., Barabino, B., Fucile, S. & Eusebi, F. Ca2+ permeability of mouse and chick nicotinic acetylcholine receptors expressed in transiently transfected human cells. J. Physiol. 507, 749–758 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imoto, K. et al. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335, 645–648 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol. 346, 967–989 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hansen, S. B., Wang, H.-L., Taylor, P. & Sine, S. M. An ion selectivity filter in the extracellular domain of Cys-loop receptors reveals determinants for ion conductance. J. Biol. Chem. 283, 36066–36070 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gharpure, A. et al. Agonist selectivity and ion permeation in the α3β4 ganglionic nicotinic receptor. Neuron 104, 501–511.e506 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hussy, N., Lukas, W. & Jones, K. A. Functional properties of a cloned 5-hydroxytryptamine ionotropic receptor subunit: comparison with native mouse receptors. J. Physiol. 481, 311–323 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walsh, R. M. et al. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 557, 261–265 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tapia, L., Kuryatov, A. & Lindstrom, J. Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. Mol. Pharmacol. 71, 769–776 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dwyer, T. M., Adams, D. J. & Hille, B. The permeability of the endplate channel to organic cations in frog muscle. J. Gen. Physiol. 75, 469–492 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, H. & Gouaux, E. Architecture and assembly mechanism of native glycine receptors. Nature 599, 513–517 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X. & Wang, W. Asymmetric gating of a human hetero-pentameric glycine receptor. Nat. Commun. 14, 6377 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labarca, C. et al. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 376, 514–516 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Filatov, G. N. & White, M. M. The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Mol. Pharmacol. 48, 379 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Engel, A. G., Shen, X.-M., Selcen, D. & Sine, S. M. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol. 14, 420–434 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jahn, K. et al. Deactivation and desensitization of mouse embryonic- and adult-type nicotinic receptor channel currents. Neurosci. Lett. 307, 89–92 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basak, S., Gicheru, Y., Rao, S., Sansom, M. S. P. & Chakrapani, S. Cryo-EM reveals two distinct serotonin-bound conformations of full-length 5-HT3A receptor. Nature 563, 270–274 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noviello, C. M. et al. Structure and gating mechanism of the α7 nicotinic acetylcholine receptor. Cell 184, 2121–2134.e2113 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sine, S. M. et al. Naturally occurring mutations at the acetylcholine receptor binding site independently alter ACh binding and channel gating. J. Gen. Physiol. 120, 483–496 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sine, S. M. et al. Mechanistic diversity underlying fast channel congenital myasthenic syndromes. Ann. N.Y. Acad. Sci. 998, 128–137 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, X.-M. et al. Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating. Hum. Mutat. 37, 1051–1059 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ealing, J. et al. Mutations in congenital myasthenic syndromes reveal an ε subunit C-terminal cysteine, C470, crucial for maturation and surface expression of adult AChR. Hum. Mol. Genet. 11, 3087–3096 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de la Rosa, G., Corrales-García, L. L., Rodriguez-Ruiz, X., López-Vera, E. & Corzo, G. Short-chain consensus alpha-neurotoxin: a synthetic 60-mer peptide with generic traits and enhanced immunogenic properties. Amino Acids 50, 885–895 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimanius, D., Dong, L., Sharov, G., Nakane, T. & Scheres, S. H. W. New tools for automated cryo-EM single-particle analysis in RELION-4.0. Biochem. J 478, 4169–4185 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jamali, K. et al. Automated model building and protein identification in cryo-EM maps. Nature, https://doi.org/10.1038/s41586-024-07215-4 (2024).

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sievers, F. & Higgins, D. G. Clustal omega. Curr. Protoc. Bioinformatics 48, 3.13.11–13.13.16 (2014).

    Article 

    Google Scholar
     

  • Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graphics 14, 354–360 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morales-Perez, C. L., Noviello, C. M. & Hibbs, R. E. Manipulation of subunit stoichiometry in heteromeric membrane proteins. Structure 24, 797–805 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basak, S. et al. Cryo-EM structure of 5-HT3A receptor in its resting conformation. Nat. Commun. 9, 514 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, X.-M. et al. Mutations causing congenital myasthenia reveal principal coupling pathway in the acetylcholine receptor ε-subunit. JCI Insight 3, e97826 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engel, A. G. et al. New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Hum. Mol. Genet. 5, 1217–1227 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fidzianska, A., Ryniewicz, B., Shen, X.-M. & Engel, A. G. IBM-type inclusions in a patient with slow-channel syndrome caused by a mutation in the AChR epsilon subunit. Neuromuscul. Disord. 15, 753–759 (2005).

    Article 
    PubMed 

    Google Scholar
     



  • Source link