• Haessler, S. et al. Phase-resolved attosecond near-threshold photoionization of molecular nitrogen. Phys. Rev. A 80, 011404 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Huppert, M., Jordan, I., Baykusheva, D., Conta, A. & Wörner, H. J. Attosecond delays in molecular photoionization. Phys. Rev. Lett. 117, 093001 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vos, J. et al. Orientation-dependent stereo Wigner time delay and electron localization in a small molecule. Science 360, 1326–1330 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas, S. et al. Probing molecular environment through photoemission delays. Nat. Phys. 16, 778–783 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kamalov, A., Wang, A. L., Bucksbaum, P. H., Haxton, D. J. & Cryan, J. P. Electron correlation effects in attosecond photoionization of CO2. Phys. Rev. A 102, 023118 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nandi, S. et al. Attosecond timing of electron emission from a molecular shape resonance. Sci. Adv. 6, eaba7762 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heck, S. et al. Attosecond interferometry of shape resonances in the recoil frame of CF4. Sci. Adv. 7, eabj8121 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Véniard, V., Taïeb, R. & Maquet, A. Phase dependence of (N+1)-color (N>1) ir-uv photoionization of atoms with higher harmonics. Phys. Rev. A 54, 721 (1996).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kienberger, R. et al. Atomic transient recorder. Nature 427, 817–821 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klünder, K. et al. Probing single-photon ionization on the attosecond time scale. Phys. Rev. Lett. 106, 143002 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Scientific background to the Nobel Prize in Physics 2023. https://www.nobelprize.org/prizes/physics/2023/advanced-information/ (The Nobel Committee for Physics, 2023).

  • Ossiander, M. et al. Attosecond correlation dynamics. Nat. Phys. 13, 280–285 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Isinger, M. et al. Photoionization in the time and frequency domain. Science 358, 893–896 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mänsson, E. P. et al. Double ionization probed on the attosecond timescale. Nat. Phys. 10, 207–211 (2014).

    Article 

    Google Scholar
     

  • Gruson, V. et al. Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science 354, 734–738 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kotur, M. et al. Spectral phase measurement of a Fano resonance using tunable attosecond pulses. Nat. Commun. 7, 10566 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cirelli, C. et al. Anisotropic photoemission time delays close to a Fano resonance. Nat. Commun. 9, 955 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peschel, J. et al. Attosecond dynamics of multi-channel single photon ionization. Nat. Commun. 13, 5205 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pazourek, R., Nagele, S. & Burgdörfer, J. Attosecond chronoscopy of photoemission. Rev. Mod. Phys. 87, 765–802 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Dahlström, J. M. et al. Theory of attosecond delays in laser-assisted photoionization. Chem. Phys. 414, 53–64 (2013).

    Article 

    Google Scholar
     

  • Zipp, L. J., Natan, A. & Bucksbaum, P. H. Probing electron delays in above-threshold ionization. Optica 1, 361–364 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photon. 14, 30–36 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hartmann, N. et al. Attosecond time–energy structure of X-ray free-electron laser pulses. Nat. Photon. 12, 215–220 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium. Science 322, 1525–1529 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Attosecond coherent electron motion in Auger-Meitner decay. Science 375, 285–290 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Serov, V. V., Derbov, V. L. & Sergeeva, T. A. Interpretation of time delay in the ionization of two-center systems. Phys. Rev. A 87, 063414 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zholents, A. A. Method of an enhanced self-amplified spontaneous emission for x-ray free electron lasers. Phys. Rev. ST Accel. Beams 8, 040701 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Li, S. et al. A co-axial velocity map imaging spectrometer for electrons. AIP Adv. 8, 115308 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Glownia, J. M. et al. Time-resolved pump-probe experiments at the LCLS. Opt. Express 18, 17620–17630 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, R.A. & Wichern, D.W. in Applied Multivariate Statistical Analysis 6th edn 409–410 (Pearson, 2007).

  • Kosugi, N., Adachi, J.-i., Shigemasa, E. & Yagishita, A. High‐resolution and symmetry‐resolved N and O K‐edge absorption spectra of NO. J. Chem. Phys. 97, 8842–8849 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rüdel, A. et al. Exchange interaction effects in NO core-level photoionization cross-sections. New J. Phys. 7, 189–189 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Pazourek, R., Nagele, S. & Burgdörfer, J. Time-resolved photoemission on the attosecond scale: opportunities and challenges. Faraday Discuss. 163, 353–376 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baykusheva, D. & Wörner, H. J. Theory of attosecond delays in molecular photoionization. J. Chem. Phys. 146, 124306 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Banks, H., Little, D., Tennyson, J. & Emmanouilidou, A. Interaction of molecular nitrogen with free-electron-laser radiation. Phys. Chem. Chem. Phys. 19, 19794–19806 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunning, T. H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Piancastelli, M. N. The neverending story of shape resonances. J. Electron Spectrosc. Relat. Phenom. 100, 167–190 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mountney, M. E. et al. Streaking single-electron ionization in open-shell molecules driven by x-ray pulses. Phys. Rev. A 107, 063111 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, W. B. et al. Photoemission in the NO molecular frame induced by soft-x-ray elliptically polarized light above the N(1s)−1 and O(1s)−1 ionization thresholds. Phys. Rev. A 75, 052718 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Breidbach, J. & Cederbaum, L. S. Universal attosecond response to the removal of an electron. Phys. Rev. Lett. 94, 033901 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, P. & Lucchese, R. R. Theoretical studies of core excitation and ionization in molecular systems. J. Synchrotron Radiat. 8, 150–153 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Russek, A. & Mehlhorn, W. Post-collision interaction and the Auger lineshape. J. Phys. B At. Mol. Phys. 19, 911 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Argenti, L. et al. Control of photoemission delay in resonant two-photon transitions. Phys. Rev. A 95, 043426 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Cattaneo, L. et al. Attosecond coupled electron and nuclear dynamics in dissociative ionization of H2. Nat. Phys. 14, 733–738 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, A. L. et al. Role of nuclear-electronic coupling in attosecond photoionization of H2. Phys. Rev. A 104, 063119 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Borràs, V. J., González-Vázquez, J., Argenti, L. & Martín, F. Attosecond photoionization delays in the vicinity of molecular Feshbach resonances. Sci. Adv. 9, eade3855 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hammerland, D. et al. Bond-length dependence of attosecond ionization delays in O2 arising from electron correlation to a shape resonance. Sci. Adv. 10, eadl3810 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Driver, T. Attosecond delays in X-ray molecular ionization. Figshare https://figshare.com/projects/Attosecond_Delays_in_X-ray_Molecular_Ionization/206401 (2024)



  • Source link


    administrator