• Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schneider, L. et al. Precursors of Majorana modes and their length-dependent energy oscillations probed at both ends of atomic Shiba chains. Nat. Nanotechnol. 17, 384–389 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeon, S. et al. Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772–776 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, H.-H. et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Q. et al. Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe. Phys. Rev. X 8, 041056 (2018).

    CAS 

    Google Scholar
     

  • Li, M. et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs. Nature 606, 890–895 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Haim, A. & Oreg, Y. Time-reversal-invariant topological superconductivity in one and two dimensions. Phys. Rep. 825, 1–48 (2019).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Valentini, M. et al. Majorana-like Coulomb spectroscopy in the absence of zero-bias peaks. Nature 612, 442–447 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mier, C., Choi, D.-J. & Lorente, N. Moiré dispersion of edge states in spin chains on superconductors. Phys. Rev. Res. 4, L032010 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Qi, X.-L., Hughes, T. L., Raghu, S. & Zhang, S. C. Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys. Rev. Lett. 102, 187001 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wong, C. L. M. & Law, K. T. Majorana Kramers doublets in \({d}_{{x}^{2}-{y}^{2}}\)-wave superconductors with Rashba spin–orbit coupling. Phys. Rev. B 86, 184516 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, F., Kane, C. L. & Mele, E. J. Time-reversal-invariant topological superconductivity and Majorana Kramers pairs. Phys. Rev. Lett. 111, 056402 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, F., Kane, C. L. & Mele, E. J. Topological mirror superconductivity. Phys. Rev. Lett. 111, 056403 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Liu, X.-J., He, J. J. & Law, K. T. Demonstrating lattice symmetry protection in topological crystalline superconductors. Phys. Rev. B 90, 235141 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Kobayashi, S. & Furusaki, A. Double Majorana vortex zero modes in superconducting topological crystalline insulators with surface rotation anomaly. Phys. Rev. B 102, 180505 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fang, C., Gilbert, M. J. & Bernevig, B. A. New class of topological superconductors protected by magnetic group symmetries. Phys. Rev. Lett. 112, 106401 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zou, J., Xie, Q., Song, Z. & Xu, G. New types of topological superconductors under local magnetic symmetries. Natl Sci. Rev. 8, nwaa169 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Xiong, Y., Yamakage, A., Kobayashi, S., Sato, M. & Tanaka, Y. Anisotropic magnetic responses of topological crystalline superconductors. Crystals 7, 58 (2017).

    Article 

    Google Scholar
     

  • Kobayashi, S., Yamakage, A., Tanaka, Y. & Sato, M. Majorana multipole response of topological superconductors. Phys. Rev. Lett. 123, 097002 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamazaki, Y., Kobayashi, S. & Yamakage, A. Magnetic response of Majorana Kramers pairs with an order-two symmetry. Phys. Rev. B 103, 094508 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kobayashi, S., Yamazaki, Y., Yamakage, A. & Sato, M. Majorana multipole response: general theory and application to wallpaper groups. Phys. Rev. B 103, 224504 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Xu, S. Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun. 3, 1192 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yang, H. et al. Superconductivity of topological surface states and strong proximity effect in Sn1−xPbxTe–Pb heterostructures. Adv. Mater. 31, 1905582 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. et al. Multiple in-gap states induced by topological surface states in the superconducting topological crystalline insulator heterostructure Sn1−xPbxTe–Pb. Phys. Rev. Lett. 125, 136802 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hashimoto, T., Yada, K., Sato, M. & Tanaka, Y. Surface electronic state of superconducting topological crystalline insulator. Phys. Rev. B 92, 174527 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Stolyarov, V. S. et al. Expansion of a superconducting vortex core into a diffusive metal. Nat. Commun. 9, 2277 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Renner, C., Kent, A. D., Niedermann, P., Fischer, Ø. & Lévy, F. Scanning tunneling spectroscopy of a vortex core from the clean to the dirty limit. Phys. Rev. Lett. 67, 1650 (1991).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H., Nagai, Y., Rózsa, L., Schreyer, D. & Wiesendanger, R. Anisotropic non-split zero-energy vortex bound states in a conventional superconductor. Appl. Phys. Rev. 8, 031417 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, W. et al. Tunable vortex Majorana modes controlled by strain in homogeneous LiFeAs. Quantum Front. 1, 20 (2022).

    Article 

    Google Scholar
     

  • Kong, L. et al. Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor. Nat. Commun. 12, 4146 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Horikoshi, K., Tong, X., Nagao, T. & Hasegawa, S. Structural phase transitions of Pb-adsorbed Si(111) surfaces at low temperatures. Phys. Rev. B 60, 13287 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guo, Y. et al. Superconductivity modulated by quantum size effects. Science 306, 1915 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weiße, A., Wellein, G., Alvermann, A. & Fehske, H. The kernel polynomial method. Rev. Mod. Phys. 78, 275 (2006).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Galvis, J. A. et al. Tilted vortex cores and superconducting gap anisotropy in 2H-NbSe2. Commun. Phys. 1, 30 (2018).

    Article 

    Google Scholar
     

  • Zhu, Z. et al. Discovery of segmented Fermi surface induced by Cooper pair momentum. Science 374, 1381 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tinkham, M. Effect of fluxoid quantization on transitions of superconducting films. Phys. Rev. 129, 2413 (1963).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J., Duan, W. & Fu, L. Two types of surface states in topological crystalline insulators. Phys. Rev. B 88, 241303(R) (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dybko, K. et al. Experimental evidence for topological surface states wrapping around a bulk SnTe crystal. Phys. Rev. B 96, 205129 (2017).

    Article 

    Google Scholar
     

  • Yuan, N. F. Q. & Fu, L. Zeeman-induced gapless superconductivity with a partial Fermi surface. Phys. Rev. B 97, 115139 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, X.-H., Chen, L., Liu, D. E., Zhang, F.-C. & Liu, X. Meissner effect induced Majorana zero modes at small magnetic field. Phys. Rev. Lett. 132, 036602 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • López Sancho, M. P., López Sancho, J. M. & Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 15, 851 (1985).

    Article 
    ADS 

    Google Scholar
     



  • Source link


    administrator