• Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aeppli, A., Kim, K., Warfield, W., Safronova, M. S. & Ye, J. Clock with 8 × 10−19 systematic uncertainty. Phys. Rev. Lett. 133, 023401 (2024).

  • Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. EPL – Europhys. Lett. 61, 181 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tkalya, E. V., Varlamov, V. O., Lomonosov, V. V. & Nikulin, S. A. Processes of the nuclear isomer 229mTh(3/2+, 3.5 ± 1.0 eV) resonant excitation by optical photons. Phys. Scr. 53, 296 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bothwell, T. et al. Resolving the gravitational redshift across a millimetre-scale atomic sample. Nature 602, 420–424 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, J. & Zoller, P. Essay: quantum sensing with atomic, molecular, and optical platforms for fundamental physics. Phys. Rev. Lett. 132, 190001 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • von der Wense, L. & Seiferle, B. The 229Th isomer: prospects for a nuclear optical clock. Eur. Phys. J. A 56, 277 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Peik, E. et al. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 6, 034002 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fadeev, P., Berengut, J. C. & Flambaum, V. V. Sensitivity of 229Th nuclear clock transition to variation of the fine-structure constant. Phys. Rev. A 102, 052833 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nickerson, B. S. et al. Driven electronic bridge processes via defect states in 229Th-doped crystals. Phys. Rev. A 103, 053120 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Helmer, R. G. & Reich, C. W. An excited state of 229Th at 3.5 eV. Phys. Rev. C 49, 1845–1858 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guimarães-Filho, Z. O. & Helene, O. Energy of the 3/2+ state of 229Th reexamined. Phys. Rev. C 71, 044303 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck, B. R. et al. Improved Value for the Energy Splitting of the Ground-State Doublet in the Nucleus 229mTh Report No. LLNL-PROC-415170 (Lawrence Livermore National Laboratory, 2009).

  • Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Masuda, T. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238–242 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamaguchi, A. et al. Energy of the 229Th nuclear clock isomer determined by absolute γ-ray energy difference. Phys. Rev. Lett. 123, 222501 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • von der Wense, L. et al. Direct detection of the 229Th nuclear clock transition. Nature 533, 47–51 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).

  • Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature 629, 62–66 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tkalya, E. V. Spontaneous emission probability for M1 transition in a dielectric medium: 229mTh (3/2+, 3.5±1.0 eV) decay. JETP Lett. 71, 311–313 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Oelker, E. et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photon. 13, 714–719 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Milner, W. R. et al. Demonstration of a timescale based on a stable optical carrier. Phys. Rev. Lett. 123, 173201 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dreissen, L. S. et al. High-precision Ramsey-comb spectroscopy based on high-harmonic generation. Phys. Rev. Lett. 123, 143001 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement avity. Phys. Rev. Lett. 94, 193201 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pupeza, I., Zhang, C., Högner, M. & Ye, J. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photon. 15, 175–186 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Tunable VUV frequency comb for 229mTh nuclear spectroscopy. Opt. Lett. 47, 5591 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ycomb – Compact frequency comb. IMRA https://www.imra.com/products/imra-scientific/ycomb-100 (2021).

  • Pronin, O. et al. Ultrabroadband efficient intracavity XUV output coupler. Opt. Express 19, 10232–10240 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fischer, J. et al. Efficient XUV-light out-coupling of intra-cavity high harmonics by a coated grazing-incidence plate. Opt. Express 30, 30969–30979 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beeks, K. et al. Optical transmission enhancement of ionic crystals via superionic fluoride transfer: growing VUV-transparent radioactive crystals. Phys. Rev. B 109, 094111 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stellmer, S., Schreitl, M. & Schumm, T. Radioluminescence and photoluminescence of Th:CaF2 crystals. Sci. Rep. 5, 15580 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dessovic, P. et al. 229Thorium-doped calcium fluoride for nuclear laser spectroscopy. J. Phys. Condens. Matter 26, 105402 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dunlap, B. D. & Kalvius, G. M. in Handbook on the Physics and Chemistry of the Actinides Vol. 2 (eds Freeman, A. J. & Lander, G. H.) 331–434 (Elsevier Science, 1985).

  • Porsev, S. G., Safronova, M. S. & Kozlov, M. G. Precision calculation of hyperfine constants for extracting nuclear moments of 229Th. Phys. Rev. Lett. 127, 253001 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • von der Wense, L. & Zhang, C. Concepts for direct frequency-comb spectroscopy of 229mTh and an internal-conversion-based solid-state nuclear clock. Eur. Phys. J. D 74, 146 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Travers, J. C., Grigorova, T. F., Brahms, C. & Belli, F. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photon. 13, 547–554 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liao, W.-T., Das, S., Keitel, C. H. & Pálffy, A. Coherence-enhanced optical determination of the 229Th isomeric transition. Phys. Rev. Lett. 109, 262502 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

  • Sinclair, L. C. et al. Invited article: a compact optically coherent fiber frequency comb. Rev. Sci. Instrum. 86, 081301 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Beeks, K. The nuclear excitation of thorium-229 in the CaF2 environment: development of a crystalline nuclear clock. PhD thesis, Technische Universität, Wien (2022).

  • Rix, S. et al. Formation of metallic colloids in CaF2 by intense ultraviolet light. Appl. Phys. Lett. 99, 261909–261909 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Seiferle, B., von der Wense, L., Laatiaoui, M. & Thirolf, P. G. A VUV detection system for the direct photonic identification of the first excited isomeric state of 229Th. Eur. Phys. J. D 70, 58 (2016).

    Article 
    ADS 

    Google Scholar
     



  • Source link


    administrator