• Hunt, T. L. & Lipo, C. P. The Statues That Walked: Unraveling the Mystery of Easter Island (Free Press, 2011).

  • Diamond, J. M. Collapse: How Societies Choose to Fail or Succeed (Penguin, 2006).

  • Bahn, P. G. & Flenley, J. Easter Island, Earth Island (Thames and Hudson, 1992).

  • DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. Revisiting warfare, monument destruction, and the ‘Huri Moai’ phase in Rapa Nui (Easter Island) culture history. J. Pac. Archaeol. 12, 1–24 (2020).


    Google Scholar
     

  • Moreno-Mayar, J. V. et al. Genome-wide ancestry patterns in Rapanui suggest pre-European admixture with native Americans. Curr. Biol. 24, 2518–2525 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fehren-Schmitz, L. et al. Genetic ancestry of Rapanui before and after European contact. Curr. Biol. 27, 3209–3215 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ioannidis, A. G. et al. Native American gene flow into Polynesia predating Easter Island settlement. Nature 583, 572–577 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hurles, M. E., Matisoo-Smith, E., Gray, R. D. & Penny, D. Untangling Oceanic settlement: the edge of the knowable. Trends Ecol. Evol. 18, 531–540 (2003).

    Article 

    Google Scholar
     

  • Kirch, P. V. Peopling of the Pacific: a holistic anthropological perspective. Annu. Rev. Anthropol. 39, 131–148 (2010).

    Article 

    Google Scholar
     

  • Hunt, T. L. & Lipo, C. P. Late colonization of Easter Island. Science 311, 1603–1606 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ralston, T. in Onward and Upward! Papers in Honor of Clement W. Meighan (eds Meighan, C. W. & Johnson, K. L.) 279–306 (Stansbury, 2005).

  • Métraux, A. Ethnology of Easter Island (Bishop Museum Press, 1971).

  • Maude, H. E. Slavers in Paradise: the Peruvian Slave Trade in Polynesia, 1862-1864 (Stanford Univ. Press, 1981).

  • Puleston, C. O. et al. Rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European contact. Front. Ecol. Evol. 5, 69 (2017).

    Article 

    Google Scholar
     

  • DiNapoli, R. J., Rieth, T. M., Lipo, C. P. & Hunt, T. L. A model-based approach to the tempo of “collapse”: the case of Rapa Nui (Easter Island). J. Archaeolog. Sci. 116, 105094 (2020).

    Article 

    Google Scholar
     

  • Boersema, J. J. The Survival of Easter Island: Dwindling Resources and Cultural Resilience (Cambridge Univ. Press, 2015).

  • DiNapoli, R. J., Crema, E. R., Lipo, C. P., Rieth, T. M. & Hunt, T. L. Approximate Bayesian computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island). Nat. Commun. 12, 3939 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mieth, A., Kühlem, A., Vogt, B. & Bork, H.-R. in The Prehistory of Rapa Nui (Easter Island) Vol. 22 (eds Rull, V. & Stevenson, C.) 483–520 (Springer, 2022).

  • Ballard, C., Brown, P., Bourke, R. M. & Harwood, T., eds. The Sweet Potato in Oceania: A Reappraisal (University of Sydney, 2005).

  • Hather, J. & Kirch, P. V. Prehistoric sweet potato (Ipomoea batatas) from Mangaia Island, Central Polynesia. Antiquity 65, 887–893 (1991).

    Article 

    Google Scholar
     

  • Storey, A. A. et al. Radiocarbon and DNA evidence for a pre-Columbian introduction of Polynesian chickens to Chile. Proc. Natl Acad. Sci. USA 104, 10335–10339 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Storey, A. A. et al. Pre-Columbian chickens, dates, isotopes, and mtDNA. Proc. Natl Acad. Sci. USA 105, E99 (2008).

  • Jones, T. L., Storey, A. A., Matisoo-Smith, E. A. & Ramírez Aliaga, J. M., eds. Polynesians in America: Pre-Columbian Contacts with the New World (AltaMira, 2011).

  • Gongora, J. et al. Reply to Storey et al.: More DNA and dating studies needed for ancient El Arenal-1 chickens. Proc. Natl Acad. Sci. USA 105, E100 (2008).

  • Gongora, J. et al. Indo-European and Asian origins for Chilean and Pacific chickens revealed by mtDNA. Proc. Natl Acad. Sci. USA 105, 10308–10313 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hagelberg, E., Quevedo, S., Turbon, D. & Clegg, J. B. DNA from ancient Easter Islanders. Nature 369, 25–26 (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sirak, K. A. et al. A minimally-invasive method for sampling human petrous bones from the cranial base for ancient DNA analysis. BioTechniques 62, 283–289 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. 164, 343–361 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article 

    Google Scholar
     

  • Arneborg, J. et al. Change of diet of the Greenland Vikings determined from stable carbon isotope analysis and 14C dating of their bones. Radiocarbon 41, 157–168 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Malaspinas, A.-S. et al. Two ancient human genomes reveal Polynesian ancestry among the indigenous Botocudos of Brazil. Curr. Biol. 24, R1035–R1037 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wollstein, A. et al. Demographic history of Oceania inferred from genome-wide data. Curr. Biol. 20, 1983–1992 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xing, J. et al. Toward a more uniform sampling of human genetic diversity: a survey of worldwide populations by high-density genotyping. Genomics 96, 199–210 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorsby, E. The Polynesian gene pool: an early contribution by Amerindians to Easter Island. Philos. Trans. R. Soc. B 367, 812–819 (2012).

    Article 

    Google Scholar
     

  • Malaspinas, A.-S. et al. bammds: a tool for assessing the ancestry of low-depth whole-genome data using multidimensional scaling (MDS). Bioinformatics 30, 2962–2964 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Mayar, J. V. FrAnTK: a Frequency-based Analysis ToolKit for efficient exploration of allele sharing patterns in present-day and ancient genomic datasets. G3 Genes Genomes Genet. https://doi.org/10.1093/g3journal/jkab357 (2021).

  • Ioannidis, A. G. et al. Paths and timings of the peopling of Polynesia inferred from genomic networks. Nature 597, 522–526 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, B. L. & Browning, S. R. Detecting identity by descent and estimating genotype error rates in sequence data. Am. J. Hum. Genet. 93, 840–851 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanghøj, K., Moltke, I., Andersen, P. A., Manica, A. & Korneliussen, T. S. Fast and accurate relatedness estimation from high-throughput sequencing data in the presence of inbreeding. GigaScience 8, giz034 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature https://doi.org/10.1038/nature18964 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Malaspinas, A.-S. et al. A genomic history of Aboriginal Australia. Nature https://doi.org/10.1038/nature18299 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Felzke, L. F. & Moore, D. Terminologias de parentesco dos grupos da família linguística Mondé. Bol. Mus. Para. Emílio Goeldi Ciênc. Hum. 14, 15–32 (2019).

    Article 

    Google Scholar
     

  • Iqbal, Z. & Van Bokhoven, H. Identifying genes responsible for intellectual disability in consanguineous families. Hum. Hered. 77, 150–160 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • González-Martín, A., García-Moro, C., Hernández, M. & Moral, P. Inbreeding and surnames: a projection into Easter Island’s past. Am. J. Phys. Anthropol. 129, 435–445 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Fournier, R., Tsangalidou, Z., Reich, D. & Palamara, P. F. Haplotype-based inference of recent effective population size in modern and ancient DNA samples. Nat. Commun. 14, 7945 (2023).

  • Felsenstein, J. Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 68, 581–597 (1971).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Browning, S. R. & Browning, B. L. Accurate non-parametric estimation of recent effective population size from segments of identity by descent. Am. J. Hum. Genet. 97, 404–418 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelleher, J., Etheridge, A. M. & McVean, G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput. Biol. 12, e1004842 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Mayar, J. V. et al. Early human dispersals within the Americas. Science 362, eaav2621 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Loh, P.-R. et al. Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193, 1233–1254 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gravel, S. Population genetics models of local ancestry. Genetics 191, 607–619 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinart, A. Exploration de l’île de Pâques. Bull. Soc. Géogr. VIe Sér. 16, 193–213 (1878).


    Google Scholar
     

  • Métraux, A. Introduction à La Connaissance de l’Île de Pâques: Résultats de l’Expédition Franco-Belge de Louis-Charles Watelin en 1934 (MNHN, 1935).

  • Laroche, M.-C. Alfred Métraux à l’île de Pâques, de juillet 1934 à janvier 1935. J. Soc. Océan. 91, 175–182 (1990).

  • Hunt, T. L. Rethinking Easter Island’s ecological catastrophe. J. Archaeolog. Sci. 34, 485–502 (2007).

    Article 

    Google Scholar
     

  • Hunt, T. L. & Lipo, C. P. Ecological catastrophe and collapse: the myth of ‘ecocide’ on Rapa Nui (Easter Island). Preprint at SSRN https://doi.org/10.2139/ssrn.2042672 (2012).

    Article 

    Google Scholar
     

  • McAnany, P. A. & Yoffee, N., eds. Questioning Collapse: Human Resilience, Ecological Vulnerability, and the Aftermath of Empire (Cambridge Univ. Press, 2010).

  • Athens, J. S. Rattus exulans and the catastrophic disappearance of Hawai’i’s native lowland forest. Biol. Invasions 11, 1489–1501 (2009).

    Article 

    Google Scholar
     

  • Stortenbeker, C. in Commissie Lange Termijn Milieubeleid (CLTM), Het Milieu: Denkbeelden voor de 21ste Eeuw 309–334 (Kerckebosch, 1990).

  • Métraux, A. Easter Island: A Stone-Age Civilization of the Pacific, translated by Bullock, M. (Book Club Associates, 1957).

  • Ramírez Aliaga, J. M. in Mar de Chile (ed. Aldunate del Solar, C.) 84–101 (Museo Chileno de Arte Precolombino, 2014).

  • Jones, T. L. & Storey, A. A. in Polynesians in America: Pre-Columbian Contacts with the New World (ed. Jones, T. L.) 25–36 (AltaMira, 2011).

  • Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Damgaard, P. B. et al. Improving access to endogenous DNA in ancient bones and teeth. Sci. Rep. 5, 11184 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2, 1756–1762 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protoc. https://doi.org/10.1101/pdb.prot5448 (2010).

  • Kapp, J. D., Green, R. E. & Shapiro, B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J. Hered. 112, 241–249 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briggs, A. W. et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87–e87 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Lindgreen, S. AdapterRemoval: easy cleaning of next generation sequencing reads. BMC Res. Notes 5, 337 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinf. 15, 356 (2014).

    Article 

    Google Scholar
     

  • Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Mayar, J. V. et al. A likelihood method for estimating present-day human contamination in ancient male samples using low-depth X-chromosome data. Bioinformatics https://doi.org/10.1093/bioinformatics/btz660 (2019).

  • The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).

    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martiniano, R., De Sanctis, B., Hallast, P. & Durbin, R. Placing ancient DNA sequences into reference phylogenies. Mol. Biol. Evol. 39, msac017 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno-Mayar, J. V. et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature 553, 203–207 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de la Fuente, C. et al. Genomic insights into the origin and diversification of late maritime hunter-gatherers from the Chilean Patagonia. Proc. Natl Acad. Sci. USA 115, E4006–E4012 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Posth, C. et al. Reconstructing the deep population history of Central and South America. Cell https://doi.org/10.1016/j.cell.2018.10.027 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakatsuka, N. et al. A paleogenomic reconstruction of the deep population history of the Andes. Cell 181, 1131–1145 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakatsuka, N. et al. Ancient genomes in South Patagonia reveal population movements associated with technological shifts and geography. Nat. Commun. 11, 3868 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen, M. et al. The ancestry and affiliations of Kennewick Man. Nature https://doi.org/10.1038/nature14625 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheib, C. L. et al. Ancient human parallel lineages within North America contributed to a coastal expansion. Science 360, 1024–1027 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sousa Da Mota, B. et al. Imputation of ancient human genomes. Nat. Commun. 14, 3660 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • Gretzinger, J. et al. The Anglo-Saxon migration and the formation of the early English gene pool. Nature 610, 112–119 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cassidy, L. M. et al. Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. Proc. Natl Acad. Sci. USA 113, 368–373 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fournier, R., Tsangalidou, Z., Reich, D. & Palamara, P. F. Haplotype-based inference of recent effective population size in modern and ancient DNA samples. Nat. Commun. 14, 7945 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2012).

    Article 

    Google Scholar
     

  • Raghavan, M. et al. The genetic prehistory of the New World Arctic. Science 345, 1255832 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link


    administrator