• Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: is there consensus? Progr. Oceanogr. 72, 276–312 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Henson, S. A. et al. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophys. Res. Lett. 38, L04606 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralization depth on the air–sea carbon balance. Nat. Geosci. 2, 630–635 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Giering, S. L. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. I 34, 267–285 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Proc. Natl Acad. Sci. USA 112, 1089–1094 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochem. Cycles 29, 1044–1059 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyd, P. W., McDonnell, A., Valdez, J., LeFevre, D. & Gall, M. P. RESPIRE: an in situ particle interceptor to conduct particle remineralization and microbial dynamics studies in the oceans’ twilight zone. Limnol. Oceanogr. Methods 13, 494–508 (2015).

    Article 

    Google Scholar
     

  • Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).

  • Pavia, F. J. et al. Shallow particulate organic carbon regeneration in the South Pacific Ocean. Proc. Natl Acad. Sci. USA 116, 9753–9758 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).

  • Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32, 858–876 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Omand, M. M., Govindarajan, R., He, J. & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: sensitivity to particle characteristics. Sci. Rep. 10, 5582 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, T. T. et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat. Commun. 13, 1657 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248–254 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leu, A. O., Eppley, J. M., Burger, A. & DeLong, E. F. Diverse genomic traits differentiate sinking-particle-associated versus free-living microbes throughout the oligotrophic open ocean water column. mBio 13, e01569-22 (2022).

  • Bressac, M. et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nat. Geosci. 12, 995–1000 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Collins, J. R. et al. The multiple fates of sinking particles in the North Atlantic Ocean. Glob. Biogeochem. Cycles 29, 1471–1494 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Belcher, A. et al. Depth-resolved particle-associated microbial respiration in the northeast Atlantic. Biogeosciences 13, 4927–4943 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Karl, D. M., Knauer, G. A. & Martin, J. H. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–441 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Herraiz-Borreguero, L. & Rintoul, S. R. Regional circulation and its impact on upper ocean variability south of Tasmania. Deep Sea Res. II 58, 2071–2081 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Iversen, M. H. Carbon export in the ocean: a biologist’s perspective. Ann. Rev. Mar. Sci. 15, 357–381 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Stukel, M. R., Ohman, M. D., Kelly, T. B. & Biard, T. The roles of suspension-feeding and flux-feeding zooplankton as gatekeepers of particle flux into the mesopelagic ocean in the Northeast Pacific. Front. Mar. Sci. 6, 397 (2019).

    Article 

    Google Scholar
     

  • Goldblatt, R. H., Mackas, D. L. & Lewis, A. G. Mesozooplankton community characteristics in the NE subarctic Pacific. Deep Sea Res. II 46, 2619–2644 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res. II 55, 1615–1635 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Burd, A. B. et al. Assessing the apparent imbalance between geochemical and biochemical indicators of meso-and bathypelagic biological activity: what the @ $♯! is wrong with present calculations of carbon budgets? Deep Sea Res. II 57, 1557–1571 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brewer, P. G. & Peltzer, E. T. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth. Phil. Trans. R. Soc. A 375, 20160319 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kong, L. F. et al. Illuminating key microbial players and metabolic processes involved in the remineralization of particulate organic carbon in the ocean’s twilight zone by metaproteomics. Appl. Environ. Microbiol. 87, e00986–21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vazquez-Dominguez, E., Vaque, D. & Gasol, J. M. Ocean warming enhances respiration and carbon demand of coastal microbial plankton. Glob. Change Biol. 13, 1327–1334 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates—potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Cavan, E. L. & Boyd, P. W. Effect of anthropogenic warming on microbial respiration and particulate organic carbon export rates in the sub-Antarctic Southern Ocean. Aquat. Microb. Ecol. 82, 111–127 (2018).

    Article 

    Google Scholar
     

  • Apple, J. K., Del Giorgio, P. A. & Kemp, W. M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43, 243–254 (2006).

    Article 

    Google Scholar
     

  • Yung, C. M. et al. Thermally adaptive tradeoffs in closely related marine bacterial strains. Environ. Microbiol. 17, 2421–2429 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Boscolo-Galazzo, F., Crichton, K. A., Barker, S. & Pearson, P. N. Temperature dependency of metabolic rates in the upper ocean: a positive feedback to global climate change? Glob. Planet. Change 170, 201–212 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McDonnell, A. M. P., Boyd, P. W. & Buesseler, K. O. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone. Glob. Biogeochem. Cycles 29, 175–193 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyd, P. W. & Kennedy, F. Microbes in a sea of sinking particles. Nat. Microbiol. 6, 1479–1480 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pomeroy, L. R. & Wiebe, W. J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 23, 187–204 (2001).

    Article 

    Google Scholar
     

  • López-Urrutia, Á. & Morán, X. A. G. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88, 817–822 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Williams, P. J., le, B. & Robertson, J. E. Overall plankton oxygen and carbon dioxide metabolism: the problem of reconciling observations and calculations of photosynthetic quotients. J. Plankton Res. 13, 153–169 (1991).


    Google Scholar
     

  • Tanioka, T. & Matsumoto, K. Stability of marine organic matter respiration stoichiometry. Geophys. Res. Lett. 47, e2019GL085564 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • del Giorgio, P. A. & Williams, P. J. (eds) Respiration in Aquatic Ecosystems (Oxford Univ. Press, 2005).

  • Fierer, N., Craine, J. M., McLauchlan, K. & Schimel, J. P. Litter quality and the temperature sensitivity of decomposition. Ecology 86, 320–326 (2005).

    Article 

    Google Scholar
     

  • Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pold, G. et al. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. mBio 11, e02293–19 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, T. P., Clegg, T., Bell, T. & Pawar, S. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24, 2123–2133 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Baumas, C. M. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 15, 1695–1708 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 2743 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Poulsen, L. K., Moldrup, M., Berge, T. & Hansen, P. J. Feeding on copepod fecal pellets: a new trophic role of dinoflagellates as detritivores. Mar. Ecol. Prog. Ser. 441, 65–78 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Mayor, D. J., Sanders, R., Giering, S. L. & Anderson, T. R. Microbial gardening in the ocean’s twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus. Bioessays 36, 1132–1137 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447–587 (Cambridge Univ. Press, 2019).

  • Cooley, S. et al. Oceans and coastal ecosystems and their services. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) 379–550 (Cambridge Univ. Press, 2022).

  • Stemmann, L., Jackson, G. A. & Gorsky, G. A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—Part II: application to a three year survey in the NW Mediterranean Sea. Deep Sea Res. I 51, 885–908 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sanders, R. J. et al. Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS): fieldwork, synthesis, and modeling efforts. Front. Mar. Sci. 3, 136 (2016).

    Article 

    Google Scholar
     

  • Korb, R. E. et al. Regional and seasonal differences in microplankton biomass, productivity, and structure across the Scotia Sea: implications for the export of biogenic carbon. Deep Sea Res. II 59, 67–77 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Rembauville, M., Manno, C., Tarling, G. A., Blain, S. & Salter, I. Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia. Deep Sea Res. I 115, 22–35 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shannon, L. V. & Nelson, G. in The South Atlantic Past and Present Circulation (eds Wefer, G. W. H. et al.) 163–210 (Springer, 1996).

  • Lovecchio, E., Henson, S., Carvalho, F. & Briggs, N. Oxygen variability in the offshore northern Benguela upwelling system from glider data. J. Geophys. Res. Oceans 127, e2022JC019063 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trull, T. W. et al. Autonomous multi-trophic observations of productivity and export at the Australian Southern Ocean Time Series (SOTS) reveal sequential mechanisms of physical–biological coupling. Front. Mar. Sci. 6, 525 (2019).

    Article 

    Google Scholar
     

  • Wynn-Edwards, et al. Particle fluxes at the Australian Southern Ocean Time Series (SOTS) achieve organic carbon sequestration at rates close to the global median, are dominated by biogenic carbonates, and show no temporal trends over 20-years. Front. Earth Sci. 8, 329 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Eriksen, R. et al. Seasonal succession of phytoplankton community structure from autonomous sampling at the Australian Southern Ocean Time Series (SOTS) observatory. Mar. Ecol. Progr. Ser. 589, 13–31 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Siegel, D. et al. An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. Elem. Sci. Anth. 9, 00107 (2021).

    Article 

    Google Scholar
     

  • Estapa, M. et al. Biogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa. Elementa 9, 00122 (2021).


    Google Scholar
     

  • Boyd, P. & Harrison, P. J. Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res. II 46, 2405–2432 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Buesseler, K. O. et al. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign. Elementa 8, 030 (2020).

  • Guieu, C. et al. Introduction: Process studies at the air–sea interface after atmospheric deposition in the Mediterranean Sea—objectives and strategy of the PEACETIME oceanographic campaign (May–June 2017). Biogeosciences 17, 5563–5585 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Guerzoni, S. et al. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progr. Oceanogr. 44, 147–190 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Claustre, H., Sciandra, A. & Vaulot, D. Introduction to the special section bio-optical and biogeochemical conditions in the south east Pacific in late 2004: the BIOSOPE program. Biogeosciences 5, 679–691 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bonnet, S. et al. Natural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the ocean. Science 380, 812–817 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lampitt, R. S., Wishner, K. F., Turley, C. M. & Angel, M. V. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Mar. Biol. 116, 689–702 (1993).

    Article 

    Google Scholar
     

  • Kiørboe, T. Marine snow microbial communities: scaling of abundances with aggregate size. Aquat. Microb. Ecol. 33, 67–75 (2003).

    Article 

    Google Scholar
     

  • Owens, S. A., Pike, S. & Buesseler, K. O. Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean. Deep Sea Res. II 116, 42–59 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lamborg, C. H. et al. The flux of bio-and lithogenic material associated with sinking particles in the mesopelagic “twilight zone” of the northwest and North Central Pacific Ocean. Deep Sea Res. II 55, 1540–1563 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Thierry, V. et al. Processing Argo Oxygen Data at the DAC Level Version 2.3.1 (2018).

  • Berggren, M., Lapierre, J. F. & Del Giorgio, P. A. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J. 6, 984–993 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, C. Microbial respiration, the engine of ocean deoxygenation. Front. Mar. Sci. 5, 533 (2019).

    Article 

    Google Scholar
     

  • Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65–80 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lauvset, S. et al. GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14, 5543–5572 (2022).

  • Karl, D. M. & Tilbrook, B. D. Production and transport of methane in oceanic particulate organic matter. Nature 368, 732–734 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Boyd, P. W. et al. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep Sea Res. II 46, 2761–2792 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mackinson, B. L., Moran, S. B., Lomas, M. W., Stewart, G. M. & Kelly, R. P. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific. Biogeosciences 12, 3429–3446 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Ramondenc, S. et al. An initial carbon export assessment in the Mediterranean Sea based on drifting sediment traps and the Underwater Vision Profiler data sets. Deep Sea Res. I 117, 107–119 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bressac, M. et al. Subsurface iron accumulation and rapid aluminum removal in the Mediterranean following African dust deposition. Biogeosciences 18, 6435–6453 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baker, C. A., Estapa, M. L., Iversen, M., Lampitt, R. & Buesseler, K. Are all sediment traps created equal? An intercomparison study of carbon export methodologies at the PAP-SO site. Progr. Oceanogr. 184, 102317 (2020).

    Article 

    Google Scholar
     

  • Cael, B. B. & Bisson, K. Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci. 5, 395 (2018).

    Article 

    Google Scholar
     

  • Berelson, W. M. Particle settling rates increase with depth in the ocean. Deep Sea Res. II 49, 237–251 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Villa‐Alfageme, M. et al. Geographical, seasonal, and depth variation in sinking particle speeds in the North Atlantic. Geophys. Res. Lett. 43, 8609–8616 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167–173 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kamalanathan, M. et al. Exoenzymes as a signature of microbial response to marine environmental conditions. mSystems 5, e00290–20 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cezairliyan, B. & Ausubel, F. M. Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc. Natl Acad. Sci. USA 114, E7796–E7802 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mahmoudi, N. et al. Illuminating microbial species‐specific effects on organic matter remineralization in marine sediments. Environ. Microbiol. 22, 1734–1747 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, E. M. Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community. Aquat. Microb. Ecol. 16, 27–35 (1998).

    Article 

    Google Scholar
     

  • Cabré, A., Shields, D., Marinov, I. & Kostadinov, T. S. Phenology of size-partitioned phytoplankton carbon-biomass from ocean color remote sensing and CMIP5 models. Front. Mar. Sci. 3, 39 (2016).

    Article 

    Google Scholar
     



  • Source link


    administrator