Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).
AI hardware has an energy problem. Nat. Electron. 6, 463 (2023).
Xiao, T. P., Bennett, C. H., Feinberg, B., Agarwal, S. & Marinella, M. J. Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7, 031301 (2020).
Woo, J. & Yu, S. Resistive memory-based analog synapse: The pursuit for linear and symmetric weight update. IEEE Nanotechnol. Mag. 12, 36–44 (2018).
Hinton, G. The Forward-Forward algorithm: some preliminary investigations. Preprint at https://arxiv.org/abs/2212.13345 (2022).
Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 255–260 (2022).
Fawzi, A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47–53 (2022).
Brown, T. et al. Language models are few-shot learners. In Proc. Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020 (eds Larochelle, H. et al.) Vol. 33, 1877–1901 (2020).
Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).
Zhao, H. et al. Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis. Nat. Commun. 14, 2276 (2023).
Rao, M. et al. Thousands of conductance levels in memristors integrated on CMOS. Nature 615, 823–829 (2023).
Williams, R. S. What’s Next? [The end of Moore’s law]. Comput. Sci. Eng. 19, 7–13 (2017).
Schuman, C. D. et al. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).
Nussbaumer, H. J. in Fast Fourier Transform and Convolution Algorithms Vol. 2, 80–111 (Springer, 1982).
Chen, S., Zhang, T., Tappertzhofen, S., Yang, Y. & Valov, I. Electrochemical‐memristor‐based artificial neurons and synapses—fundamentals, applications, and challenges. Adv. Mater. 35, 2301924 (2023).
Li, Y. et al. Memristive field‐programmable analog arrays for analog computing. Adv. Mater. 35, 2206648 (2023).
Zhang, Y. et al. Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev. 7, 011308 (2020).
Merced-Grafals, E. J., Dávila, N., Ge, N., Williams, R. S. & Strachan, J. P. Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications. Nanotechnology 27, 365202 (2016).
Choi, S., Yang, Y. & Lu, W. Random telegraph noise and resistance switching analysis of oxide based resistive memory. Nanoscale 6, 400–404 (2014).
van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).
Korkmaz, A. et al. Memristor-based offset cancellation technique in analog crossbars. In 2023 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2023).
He, C., Korkmaz, A., Katehi, L. P., Williams, R. S. & Palermo, S. Analog signal processing in high frequency circuits using crossbar configurations. In Proc. 2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS) 116–121 (IEEE, 2021).
Marinella, M. J. et al. Multiscale co-design analysis of energy, latency, area, and accuracy of a ReRAM analog neural training accelerator. IEEE J. Emerg. Sel. Top. Circuits Syst. 8, 86–101 (2018).
Rath, S. P., Thompson, D., Goswami, S. & Goswami, S. Many-body molecular interactions in a memristor. Adv. Mater. 35, 2204551 (2022).
Goswami, S. et al. Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotechnol. 15, 380–389 (2020).
Zoppo, G. et al. A mathematical formulation of the wire resistance problem in memristor crossbars. In Proc. 2022 IEEE 22nd International Conference on Nanotechnology (NANO) 461–464 (IEEE, 2022).
Jeong, Y., Zidan, M. A. & Lu, W. D. Parasitic effect analysis in memristor-array-based neuromorphic systems. IEEE Trans. Nanotechnol. 17, 184–193 (2017).
Liao, Y. et al. Diagonal matrix regression layer: Training neural networks on resistive crossbars with interconnect resistance effect. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 40, 1662–1671 (2020).
Zoppo, G. et al. Analog solutions of discrete Markov chains via memristor crossbars. IEEE Trans. Circuits Syst. I Regul. Pap. 68, 4910–4923 (2021).
Song, S., Miller, K. D. & Abbott, L. F. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000).
Shulz, D. & Feldman, D. in Comprehensive Developmental Neuroscience: Neural Circuit Development and Function in the Healthy and Diseased Brain. Ch. 9, 155–181 (Elsevier, 2013).
Goswami, S., Goswami, S. & Venkatesan, T. An organic approach to low energy memory and brain inspired electronics. Appl. Phys. Rev. 7, 021303 (2020).
Goswami, S. et al. Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16, 1216–1224 (2017).
Goswami, S. et al. Decision trees within a molecular memristor. Nature 597, 51–56 (2021).
Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).
Goswami, S. et al. Nanometer‐scale uniform conductance switching in molecular memristors. Adv. Mater. 32, 2004370 (2020).
Yi, W. et al. Quantized conductance coincides with state instability and excess noise in tantalum oxide memristors. Nat. Commun. 7, 11142 (2016).
Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).
Jo, J. et al. Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett. 99, 267602 (2007).
Migliore, A. & Nitzan, A. Nonlinear charge transport in redox molecular junctions: a Marcus perspective. ACS Nano 5, 6669–6685 (2011).
Schwarz, F. et al. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nat. Nanotechnol. 11, 170–176 (2016).
Liang, G., Ghosh, A., Paulsson, M. & Datta, S. Electrostatic potential profiles of molecular conductors. Phys. Rev. B 69, 115302 (2004).
Yuan, L. et al. Controlling the direction of rectification in a molecular diode. Nat. Commun. 6, 6324 (2015).
Lee, H. D. et al. Integration of 4F2 selector-less crossbar array 2Mb ReRAM based on transition metal oxides for high density memory applications. In Proc. 2012 Symposium on VLSI Technology (VLSIT) 151–152 (IEEE, 2012).
Choi, B. J. et al. Trilayer tunnel selectors for memristor memory cells. Adv. Mater. 28, 356–362 (2016).
Korkmaz, A. et al. Spectral ranking in complex networks using memristor crossbars. IEEE J. Emer. Sel. Top. Circuits Syst. 13, 357–370 (2023).
Strachan, J. P., Hu, M., Williams, R. S. & Li, Z. Memristor crossbar array for performing a Fourier transformation. US Patent No. 10,621,267 (2020).
Kumar, A. A. & Makur, A. Hermitian symmetric DFT codes: a new class of complex DFT codes. IEEE Trans. Signal Process. 60, 2396–2407 (2012).
Jouppi, N. P. et al. In-datacenter performance analysis of a tensor processing unit. In Proc. 44th Annual International Symposium on Computer Architecture 1–12 (ACM, 2017).
Goswami, S., Thompson, D., Williams, R. S., Goswami, S. & Venkatesan, T. Colossal current and voltage tunability in an organic memristor via electrode engineering. Appl. Mater. Today 19, 100626 (2020).
Tsioutsios, I. et al. Free-standing silicon shadow masks for transmon qubit fabrication. AIP Adv. 10, 065120 (2020).
Aksu, S. et al. High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy. Nano Lett. 10, 2511–2518 (2010).
Yi, S. I. et al. Energy and space efficient parallel adder using molecular memristors. Adv. Mater. 35, 2206128 (2023).
Matsui, H., Takeda, Y. & Tokito, S. Flexible and printed organic transistors: From materials to integrated circuits. Org. Electron. 75, 105432 (2019).
Berggren, M. et al. Browsing the real world using organic electronics, Si‐chips, and a human touch. Adv. Mater. 28, 1911–1916 (2016).
Gergel-Hackett, N., Zangmeister, C. D., Hacker, C. A., Richter, L. J. & Richter, C. A. Demonstration of molecular assembly on Si (100) for CMOS-compatible molecule-based electronic devices. J. Am. Chem. Soc. 130, 4259–4261 (2008).
Gergel-Hackett, N., Hill, A. A., Hacker, C. A. & Richter, C. A. The integration of molecular electronic devices with traditional CMOS technologies. In Proc. 2008 8th IEEE Conference on Nanotechnology. 522–525 (IEEE, 2008).
Orji, N. G. et al. Metrology for the next generation of semiconductor devices. Nat. Electron. 1, 532–547 (2018).
Xia, Q. et al. Memristor−CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9, 3640–3645 (2009).
Morris, T. W. et al. Multi‐electron reduction capacity and multiple binding pockets in metal–organic redox assembly at surfaces. Chem. A Eur. J. 25, 5565–5573 (2019).
Skomski, D., Abb, S. & Tait, S. L. Robust surface nano-architecture by alkali–carboxylate ionic bonding. J. Am. Chem. Soc. 134, 14165–14171 (2012).
Gibney, E. The inside story on wearable electronics. Nature 528, 26–28 (2015).
Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).
Ates, H. C., Yetisen, A. K., Güder, F. & Dincer, C. Wearable devices for the detection of COVID-19. Nat. Electron. 4, 13–14 (2021).
Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).
Williams, R. S., Goswami, S. & Goswami, S. Potential and challenges of computing with molecular materials. Nat. Mater. https://doi.org/10.1038/s41563-024-01820-4 (2024).
Shi, L., Zheng, G., Tian, B., Dkhil, B. & Duan, C. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2, 1811–1827 (2020).
Li, H. et al. Memristive crossbar arrays for storage and computing applications. Adv. Intell. Syst. 3, 2100017 (2021).
Zoppo, G. et al. A mathematical analysis of wire resistance problem in memristor crossbars. In Proc. 2022 19th International SoC Design Conference (ISOCC) 249–250 (IEEE, 2022).
Lepri, N. et al. Modeling and compensation of IR drop in crosspoint accelerators of neural networks. IEEE Trans. Electron Devices 69, 1575–1581 (2022).
Hu, M., Strachan, J. P., Zhiyong, L., Stanley, R. & Williams, R. S. Dot-product engine as computing memory to accelerate machine learning algorithms. In International Symposium on Quality Electronic Design (ISQED) 374–379 (ISQED, 2016).
Hu, M. et. al. Dot-product engine for neuromorphic computing: programming 1T1M crossbar to accelerate matrix-vector multiplication. In Proc. 53rd Annual Design Automation Conference 19:1–19:6 (DAC, 2016).
Shi, J., Yin, W., Osher, S. & Sajda, P. A fast hybrid algorithm for large-scale l1-regularized logistic regression. J. Mach. Learn. Res. 11, 713–741 (2010).
Rupp, M., Tkatchenko, A., Müller, K.-R. & Von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
McConaghy, T. in Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation (eds Riolo, R. et al.) 235–260 (Springer, 2011).
Acharya, J., Diakonikolas, I., Li, J. & Schmidt, L. Fast algorithms for segmented regression. In Proc. International Conference on Machine Learning 2878–2886 (PMLR, 2016).