• Langen, T., Valtolina, G., Wang, D. & Ye, J. Quantum state manipulation and science of ultracold molecules. Nat. Phys. 20, 702–712 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Cornish, S. L., Tarbutt, M. R. & Hazzard, K. R. A. Quantum computation and quantum simulation with ultracold molecules. Nat. Phys. 20, 730–740 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, J.-R. et al. Tunable itinerant spin dynamics with polar molecules. Nature 614, 70–74 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Christakis, L. et al. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 614, 64–69 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carroll, A. N. et al. Observation of coherent generalized t-J spin dynamics with tunable dipolar interactions. Preprint at https://doi.org/10.48550/arXiv.2404.18916 (2024).

  • Choi, J. et al. Robust dynamic Hamiltonian engineering of many-body spin systems. Phys. Rev. X 10, 031002 (2020).

    CAS 

    Google Scholar
     

  • Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Safronova, M. S. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Sundar, B., Gadway, B. & Hazzard, K. R. A. Synthetic dimensions in ultracold polar molecules. Sci. Rep. 8, 3422 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, H. et al. Robust Hamiltonian Engineering for Interacting Qudit Systems. Phys. Rev. X 14, 031017 (2024).

  • Viola, L. & Lloyd, S. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733–2744 (1998).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Viola, L., Knill, E. & Lloyd, S. Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Souza, A. M., Álvarez, G. A. & Suter, D. Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhou, H. et al. Robust higher-order Hamiltonian engineering for quantum sensing with strongly interacting systems. Phys. Rev. Lett. 131, 220803 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Weitenberg, C. & Simonet, J. Tailoring quantum gases by Floquet engineering. Nat. Phys. 17, 1342–1348 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kwan, J. et al. Realization of 1D anyons with arbitrary statistical phase. Preprint at https://doi.org/10.48550/arxiv.2306.01737 (2023).

  • Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Geier, S. et al. Floquet Hamiltonian engineering of an isolated many-body spin system. Science 374, 1149–1152 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martin, L. S. et al. Controlling local thermalization dynamics in a Floquet-engineered dipolar ensemble. Phys. Rev. Lett. 130, 210403 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuster, T. et al. Floquet engineering ultracold polar molecules to simulate topological insulators. Phys. Rev. A 103, 063322 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, X., Hu, Z. & Liu, Y.-C. Fast generation of GHZ-like states using collective-spin XYZ model. Phys. Rev. Lett. 132, 113402 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. C., Xu, Z. F., Jin, G. R. & You, L. Spin squeezing: transforming one-axis twisting into two-axis twisting. Phys. Rev. Lett. 107, 013601 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Carr, H. Y. & Purcell, E. M. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 94, 630–638 (1954).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Waugh, J. S., Huber, L. M. & Haeberlen, U. Approach to high-resolution NMR in solids. Phys. Rev. Lett. 20, 180–182 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Peng, P., Yin, C., Huang, X., Ramanathan, C. & Cappellaro, P. Floquet prethermalization in dipolar spin chains. Nat. Phys. 17, 444–447 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, L. B. et al. Programmable Heisenberg interactions between Floquet qubits. Nat. Phys. https://doi.org/10.1038/s41567-023-02326-7 (2024).

  • Scholl, P. et al. Microwave engineering of programmable XXZ Hamiltonians in arrays of Rydberg atoms. PRX Quantum 3, 020303 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zu, C. et al. Emergent hydrodynamics in a strongly interacting dipolar spin ensemble. Nature 597, 45–50 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morong, W. et al. Engineering dynamically decoupled quantum simulations with trapped ions. PRX Quantum 4, 010334 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Chotia, A. et al. Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice. Phys. Rev. Lett. 108, 080405 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Moses, S. A. et al. Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350, 659–662 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Picard, L. R. B., Patenotte, G. E., Park, A. J., Gebretsadkan, S. F. & Ni, K.-K. Site-selective preparation and multi-state readout of molecules in optical tweezers. PRX Quantum 5, 020344 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Ruttley, D. K., Guttridge, A., Hepworth, T. R. & Cornish, S. L. Enhanced quantum control of individual ultracold molecules using optical tweezer arrays. PRX Quantum 5, 020333 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Bao, Y. et al. Dipolar spin-exchange and entanglement between molecules in an optical tweezer array. Science 382, 1138–1143 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Holland, C. M., Lu, Y. & Cheuk, L. W. On-demand entanglement of molecules in a reconfigurable optical tweezer array. Science https://doi.org/10.1126/science.adf4272 (2023).

  • Anderegg, L. et al. An optical tweezer array of ultracold molecules. Science 365, 1156–1158 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kaufman, A. M. & Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 17, 1324–1333 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yan, B. et al. Observation of dipolar spin-exchange interactions with lattice-confined polar molecules. Nature 501, 521–525 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tobias, W. G. et al. Reactions between layer-resolved molecules mediated by dipolar spin exchange. Science 375, 1299–1303 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeßelberg, F. et al. Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap. Phys. Rev. Lett. 121, 253401 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, A. J. et al. Extended rotational coherence of polar molecules in an elliptically polarized trap. Phys. Rev. Lett. 131, 183401 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burchesky, S. et al. Rotational coherence times of polar molecules in optical tweezers. Phys. Rev. Lett. 127, 123202 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gregory, P. D. et al. Second-scale rotational coherence and dipolar interactions in a gas of ultracold polar molecules. Nat. Phys. https://doi.org/10.1038/s41567-023-02328-5 (2024).

  • Brennen, G. K., Micheli, A. & Zoller, P. Designing spin-1 lattice models using polar molecules. New J. Phys. 9, 138 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Ospelkaus, S. et al. Controlling the hyperfine state of Rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hazzard, K. R. A. et al. Many-body dynamics of dipolar molecules in an optical lattice. Phys. Rev. Lett. 113, 195302 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Altman, E. et al. Quantum simulators: architectures and opportunities. PRX Quantum 2, 017003 (2021).

    Article 

    Google Scholar
     

  • Luo, C. et al. Hamiltonian engineering of collective XYZ spin models in an optical cavity: from one-axis twisting to two-axis counter twisting models. Preprint at https://doi.org/10.48550/arxiv.2402.19429 (2024).

  • Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Haeberlen, U. & Waugh, J. S. Coherent averaging effects in magnetic resonance. Phys. Rev. 175, 453–467 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gorshkov, A. V. et al. Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A 84, 033619 (2011).

    Article 
    ADS 

    Google Scholar
     

  • de Paz, A. et al. Nonequilibrium quantum magnetism in a dipolar lattice gas. Phys. Rev. Lett. 111, 185305 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Bilitewski, T. et al. Dynamical generation of spin squeezing in ultracold dipolar molecules. Phys. Rev. Lett. 126, 113401 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tyler, M., Zhou, H., Martin, L. S., Leitao, N. & Lukin, M. D. Higher-order methods for Hamiltonian engineering pulse sequence design. Phys. Rev. A 108, 062602 (2023).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Signoles, A. et al. Glassy dynamics in a disordered Heisenberg quantum spin system. Phys. Rev. X 11, 011011 (2021).

    CAS 

    Google Scholar
     

  • Borregaard, J., Davis, E. J., Bentsen, G. S., Schleier-Smith, M. H. & Sørensen, A. S. One- and two-axis squeezing of atomic ensembles in optical cavities. New J. Phys. 19, 093021 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kajtoch, D. & Witkowska, E. Quantum dynamics generated by the two-axis countertwisting Hamiltonian. Phys. Rev. A 92, 013623 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Muñoz-Arias, M. H., Deutsch, I. H. & Poggi, P. M. Phase-space geometry and optimal state preparation in quantum metrology with collective spins. PRX Quantum 4, 020314 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed atoms: a macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Geier, S. et al. Time-reversal in a dipolar quantum many-body spin system. Preprint at https://doi.org/10.48550/arxiv.2402.13873 (2024).

  • Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • De Marco, L. et al. A degenerate Fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Y., Kolkowitz, S., Puri, S. & Thompson, J. D. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun. 13, 4657 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffiths, D. J. Introduction to Quantum Mechanics (Cambridge Univ. Press, 2017).



  • Source link


    administrator