• Eriksson, L., Davies, J. A. & Mayer, J. W. Ion implantation studies in silicon. Science 163, 627–633 (1969).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Street, R. A. Doping and the Fermi energy in amorphous silicon. Phys. Rev. Lett. 49, 1187–1190 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hirschman, K. D., Tsybeskov, L., Duttagupta, S. P. & Fauchet, P. M. Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384, 338–341 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28, L2112 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nakamura, S., Mukai, T. & Senoh, M. Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ponce, F. A. & Bour, D. P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Euvrard, J., Yan, Y. & Mitzi, D. B. Electrical doping in halide perovskites. Nat. Rev. Mater. 6, 531–549 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yamashita, Y. et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572, 634–638 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, H. et al. Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 599, 67–73 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishii, M., Yamashita, Y., Watanabe, S., Ariga, K. & Takeya, J. Doping of molecular semiconductors through proton-coupled electron transfer. Nature 622, 285–291 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Galli, G. Doping the undopable. Nature 436, 32–33 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Talapin, D. V. & Murray, C. B. PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310, 86–89 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stranks, S. D. et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. et al. Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 348, 683–686 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Tsai, H. et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 360, 67–70 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790–795 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, K. et al. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science 376, 762–767 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, S. et al. Homogenized NiOx nanoparticles for improved hole transport in inverted perovskite solar cells. Science 382, 1399–1404 (2023).

  • Zheng, X. et al. Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells. Nat. Energy 8, 462–472 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, B. et al. High-efficiency perovskite-polymer bulk heterostructure light-emitting diodes. Nat. Photonics 12, 783 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 562, 245 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13, 418–424 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hassan, Y. et al. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 591, 72–77 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ma, D. et al. Distribution control enables efficient reduced-dimensional perovskite LEDs. Nature 599, 594–598 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, B. et al. Ultrastable near-infrared perovskite light-emitting diodes. Nat. Photonics 16, 637–643 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, X. et al. Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes. Joule 7, 272–308 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Y. et al. Bright and stable perovskite light-emitting diodes in the near-infrared range. Nature 615, 830–835 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photonics 9, 679–686 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tsai, H. et al. A sensitive and robust thin-film X-ray detector using 2D layered perovskite diodes. Sci. Adv. 6, eaay0815 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, Q. et al. Inverted perovskite solar cells using dimethylacridine-based dopants. Nature 620, 545–551 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cui, P. et al. Planar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%. Nat. Energy 4, 150–159 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiong, S. et al. Direct observation on p- to n-type transformation of perovskite surface region during defect passivation driving high photovoltaic efficiency. Joule 5, 467–480 (2021).

    Article 
    CAS 

    Google Scholar
     

  • He, R. et al. Improving interface quality for 1-cm2 all-perovskite tandem solar cells. Nature 618, 80–86 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Storm, K. et al. Spatially resolved Hall effect measurement in a single semiconductor nanowire. Nat. Nanotechnol. 7, 718–722 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shi, T., Yin, W.-J., Hong, F., Zhu, K. & Yan, Y. Unipolar self-doping behavior in perovskite CH3NH3PbBr3. Appl. Phys. Lett. 106, 103902 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Li, P. et al. Multiple-quantum-well perovskite for hole-transport-layer-free light-emitting diodes. Chin. Chem. Lett. 33, 1017–1020 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Noel, N. K. et al. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiong, W. et al. Research data supporting “Controllable p- and n-type behaviours in emissive perovskite semiconductors”. Figshare https://doi.org/10.6084/m9.figshare.26048218 (2024).



  • Source link


    administrator