• Ruben, S. & Kamen, M. D. Radioactive carbon of long half-life. Phys. Rev. 57, 549 (1940).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taylor, R. E. & Bar-Yosef, O. Radiocarbon Dating: An Archaeological Perspective (Routledge, 2014). https://doi.org/10.4324/9781315421216.

  • Heaton, T. J. et al. Radiocarbon: a key tracer for studying Earth’s dynamo, climate system, carbon cycle, and Sun. Science 374, eabd7096 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Arnold, J. R. & Libby, W. F. Age determinations by radiocarbon content: checks with samples of known age. Science 110, 678–680 (1949).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Libby, W. F., Anderson, E. C. & Arnold, J. R. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109, 227–228 (1949).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62, 759–778 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Bronk Ramsey, C., Manning, S. W. & Galimberti, M. Dating the volcanic eruption at Thera. Radiocarbon 46, 325–344 (2004).

    Article 

    Google Scholar
     

  • Pearson, C., Sbonias, K., Tzachili, I. & Heaton, T. J. Olive shrub buried on Therasia supports a mid-16th century BCE date for the Thera eruption. Sci. Rep. 13, 6994 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruins, H. J. et al. Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. J. Archaeol. Sci. 35, 191–212 (2008).

    Article 

    Google Scholar
     

  • Buck, C. E., Cavanagh, W. G. & Litton, C. D. Bayesian Approach to Interpreting Archaeological Data (John Wiley, 1996).

  • Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).

    Article 

    Google Scholar
     

  • Bayliss, A. & Marshall, P. Radiocarbon Dating and Chronological Modelling: Guidelines and Best Practice (Historic England, 2022).

  • Bronk Ramsey, C. et al. Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quat. Sci. Rev. 118, 18–32 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Bayliss, A. et al. Informing conservation: towards 14C wiggle-matching of short tree-ring sequences from medieval buildings in England. Radiocarbon 59, 985–1007 (2017).

    Article 

    Google Scholar
     

  • Bard, E., Raisbeck, G. M., Yiou, F. & Jouzel, J. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth Planet. Sci. Lett. 150, 453–462 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Muscheler, R. et al. Solar activity during the last 1000 yr inferred from radionuclide records. Quat. Sci. Rev. 26, 82–97 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Stuiver, M. & Braziunas, T. F. Sun, ocean, climate and atmospheric 14CO2: an evaluation of causal and spectral relationships. Holocene 3, 289–305 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. A signature of cosmic-ray increase in ad 774–775 from tree rings in Japan. Nature 486, 240–242 (2012). This is the publication of the first (ad 774) Miyake event, initially assumed to be caused by a supernova.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mekhaldi, F. et al. Multiradionuclide evidence for the solar origin of the cosmic-ray events of ad 774/5 and 993/4. Nat. Commun. 6, 8611 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Usoskin, I. G. et al. The AD775 cosmic event revisited: the Sun is to blame. Astron. Astrophys. 552, L3 (2013). This is the proof of a solar origin for the ad 774 Miyake event and the introduction of the term ESPE.

    Article 
    ADS 

    Google Scholar
     

  • Ritter, S. et al. International legal and ethical issues of a future Carrington Event: existing frameworks, shortcomings, and recommendations. New Space 8, 23–30 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Oughton, E. J., Skelton, A., Horne, R. B., Thomson, A. W. P. & Gaunt, C. T. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather 15, 65–83 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Atwater, B. F. Evidence for great Holocene earthquakes along the outer coast of Washington state. Science 236, 942–944 (1987).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Winkler, T. S. et al. Revising evidence of hurricane strikes on Abaco Island (The Bahamas) over the last 700 years. Sci. Rep. 10, 16556 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilhelm, B. et al. Impact of warmer climate periods on flood hazard in the European Alps. Nat. Geosci. 15, 118–123 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sukhodolov, T. et al. Atmospheric impacts of the strongest known solar particle storm of 775 AD. Sci. Rep. 7, 45257 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koldobskiy, S., Mekhaldi, F., Kovaltsov, G. & Usoskin, I. Multiproxy reconstructions of integral energy spectra for extreme solar particle events of 7176 BCE, 660 BCE, 775 CE, and 994 CE. J. Geophys. Res. Space Phys. 128, e2022JA031186 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Clette, F. et al. Recalibration of the sunspot-number: status report. Sol. Phys. 298, 44 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hudson, H. S. Carrington events. Annu. Rev. Astron. Astrophys. 59, 445–477 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Uusitalo, J. et al. Transient offset in 14C after the Carrington event recorded by polar tree rings. Geophys. Res. Lett. 51, e2023GL106632 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Suter, M., Huber, R., Jacob, S. A. W., Synal, H.-A. & Schroeder, J. B. A new small accelerator for radiocarbon dating. AIP Conf. Proc. 475, 665–667 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Synal, H.-A., Stocker, M. & Suter, M. MICADAS: a new compact radiocarbon AMS system. Nucl. Instrum. Methods Phys. Res. B 259, 7–13 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Synal, H.-A. & Wacker, L. AMS measurement technique after 30 years: possibilities and limitations of low energy systems. Nucl. Instrum. Methods Phys. Res. B 268, 701–707 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • O’Hare, P. et al. Multiradionuclide evidence for an extreme solar proton event around 2,610 B.P. (660 BC). Proc. Natl Acad. Sci. USA 116, 5961–5966 (2019). This reports the discovery of a confirmed 660 bc ESPE with multi-proxy analysis.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brehm, N. et al. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nat. Geosci. 14, 10–15 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brehm, N. et al. Tree-rings reveal two strong solar proton events in 7176 and 5259 BCE. Nat. Commun. 13, 1196 (2022). This paper reports the discovery of confirmed 7176 bc and 5259 bc ESPEs.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paleari, C. I. et al. Cosmogenic radionuclides reveal an extreme solar particle storm near a solar minimum 9125 years BP. Nat. Commun. 13, 214 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyake, F. et al. A single-year cosmic ray event at 5410 BCE registered in 14C of tree rings. Geophys. Res. Lett. 48, e2021GL093419 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bard, E. et al. A radiocarbon spike at 14,300 cal yr BP in subfossil trees provides the impulse response function of the global carbon cycle during the Late Glacial. Philos. Trans. A Math. Phys. Eng. Sci. 381, 20220206 (2023). This paper reports the largest annual increase in Δ14C, and the only pre-Holocene event, discovered so far.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyake, F., Masuda, K. & Nakamura, T. Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 4, 1748 (2013). This paper provides evidence of a second (ad 993) Miyake event, showing that these events recur.

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stuiver, M. A note on single-year calibration of the radiocarbon time scale, AD 1510–1954. Radiocarbon 35, 67–72 (1993).

    Article 

    Google Scholar
     

  • Southon, J., Noronha, A. L., Cheng, H., Edwards, R. L. & Wang, Y. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82. Quat. Sci. Rev. 33, 32–41 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Cheng, H. et al. Atmospheric 14C/12C changes during the last glacial period from Hulu Cave. Science 362, 1293–1297 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper, A. et al. A global environmental crisis 42,000 years ago. Science 371, 811–818 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hogg, A. G. et al. Advances and limitations in establishing a contiguous high-resolution atmospheric radiocarbon record derived from subfossil kauri tree rings for the interval 60–27 cal kyr BP. Quat. Geochronol. 68, 101251 (2022).

    Article 

    Google Scholar
     

  • Reimer, P. J. et al. Selection and treatment of data for radiocarbon calibration: an update to the international calibration (IntCal) criteria. Radiocarbon 55, 1923–1945 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Heaton, T. J. et al. The IntCal20 approach to radiocarbon calibration curve construction: a new methodology using Bayesian splines and errors-in-variables. Radiocarbon 62, 821–863 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Büntgen, U. et al. Tree rings reveal globally coherent signature of cosmogenic radiocarbon events in 774 and 993 CE. Nat. Commun. 9, 3605 (2018). This is the evidence of global ESPE signatures that enables them to be used for annual-precision 14C calibration.

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wacker, L. et al. Radiocarbon dating to a single year by means of rapid atmospheric 14C changes. Radiocarbon 56, 573–579 (2014). This is the first usage of ESPEs to provide annual-precision dating using 14C.

    Article 
    CAS 

    Google Scholar
     

  • Hakozaki, M. et al. Verification of the annual dating of the 10th century Baitoushan volcano eruption based on an AD 774–775 radiocarbon spike. Radiocarbon 60, 261–268 (2018).

    Article 

    Google Scholar
     

  • Kuitems, M. et al. Radiocarbon-based approach capable of subannual precision resolves the origins of the site of Por-Bajin. Proc. Natl Acad. Sci. USA 117, 14038–14041 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oppenheimer, C. et al. Multi-proxy dating the ‘millennium eruption’ of Changbaishan to late 946 CE. Quat. Sci. Rev. 158, 164–171 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Meadows, J., Zunde, M., Lēģere, L., Dee, M. W. & Hamann, C. in Radiocarbon. (ed Jull, A.J.T.) https://doi.org/10.1017/RDC.2023.24 (Cambridge Univ. Press, 2023).

  • Philippsen, B., Feveile, C., Olsen, J. & Sindbæk, S. M. Single-year radiocarbon dating anchors Viking Age trade cycles in time. Nature 601, 392–396 (2022). This provides an annual date for the start of the Viking Age using the ad 774 ESPE.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kuitems, M. et al. Evidence for European presence in the Americas in ad 1021. Nature 601, 388–391 (2022). This paper identifies the year that Vikings were present in North America using the ad 993 ESPE.

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Black, B. A. et al. A multifault earthquake threat for the Seattle metropolitan region revealed by mass tree mortality. Sci. Adv. 9, eadh4973 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maczkowski, A. et al. Absolute dating of the European Neolithic using the 5259 BC rapid 14C excursion. Nat. Commun. 15, 4263 (2024).

  • Manning, S. W., Birch, J., Conger, M. A. & Sanft, S. Resolving time among non-stratified short-duration contexts on a radiocarbon plateau: possibilities and challenges from the AD 1480–1630 example and northeastern North America. Radiocarbon 62, 1785–1807 (2020).

    Article 

    Google Scholar
     

  • Nakao, N., Sakamoto, M. & Imamura, M. 14C dating of historical buildings in Japan. Radiocarbon 56, 691–697 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Capano, M. et al. Is the dating of short tree-ring series still a challenge? New evidence from the pile dwelling of Lucone di Polpenazze (northern Italy). J. Archaeol. Sci. 121, 105190 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Djamali, M. et al. An absolute radiocarbon chronology for the world heritage site of Sarvestan (SW Iran): a late Sasanian heritage in early Islamic era. Archaeometry 64, 545–559 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jull, A. J. T., Burr, G. S. & Hodgins, G. W. L. Radiocarbon dating, reservoir effects, and calibration. Quat. Int. 299, 64–71 (2013).

    Article 

    Google Scholar
     

  • Gosman, J. H., Hubbell, Z. R., Shaw, C. N. & Ryan, T. M. Development of cortical bone geometry in the human femoral and tibial diaphysis. Anat. Rec. 296, 774–787 (2013).

    Article 

    Google Scholar
     

  • Ubelaker, D. H. et al. Lag time of modern bomb-pulse radiocarbon in human bone tissues: new data from Brazil. Forensic Sci. Int. 331, 111143 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rose, H. A., Meadows, J. & Bjerregaard, M. High-resolution dating of a medieval multiple grave. Radiocarbon 60, 1547–1559 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chmielewski, T. J. et al. Increase in 14C dating accuracy of prehistoric skeletal remains by optimised bone sampling: Chronometric studies on eneolithic burials from Mikulin 9 (Poland) and Urziceni-Vada Ret (Romania). Geochronometria 47, 196–208 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Millard, A. Palace Green Library Excavations 2013 (PGL13): Chronology of the Burials. https://durham-repository.worktribe.com/output/1636149 (Durham University, 2015).

  • Gerrard, C., Graves, P., Millard, A., Annis, R. & Caffell, A. Lost Lives, New Voices: Unlocking the Stories of the Scottish Soldiers at the Battle of Dunbar, 1650 (Oxbow, 2018).

  • Douka, K. et al. Age estimates for hominin fossils and the onset of the Upper Palaeolithic at Denisova Cave. Nature 565, 640–644 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fowler, C. et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature 601, 584–587 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Meadows, J. et al. High-precision Bayesian chronological modeling on a calibration plateau: the Niedertiefenbach gallery grave. Radiocarbon 62, 1261–1284 (2020).

    Article 

    Google Scholar
     

  • Sedig, J. W., Olalde, I., Patterson, N., Harney, É. & Reich, D. Combining ancient DNA and radiocarbon dating data to increase chronological accuracy. J. Archaeol. Sci. 133, 105452 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Usoskin, I. G. et al. Solar cyclic activity over the last millennium reconstructed from annual 14C data. Astron. Astrophys. 649, A141 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wu, C.-J., Krivova, N. A., Solanki, S. K. & Usoskin, I. G. Solar total and spectral irradiance reconstruction over the last 9000 years. Astron. Astrophys. 620, A120 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Usoskin, I. G. et al. Revisited reference solar proton event of 23 February 1956: assessment of the cosmogenic-isotope method sensitivity to extreme solar events. J. Geophys. Res. Space Phys. 125, e2020JA027921 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mekhaldi, F., Adolphi, F., Herbst, K. & Muscheler, R. The signal of solar storms embedded in cosmogenic radionuclides: detectability and uncertainties. J. Geophys. Res. Space Phys. 126, e2021JA029351 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Usoskin, I. G. A history of solar activity over millennia. Living Rev. Sol. Phys. 20, 2 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Maehara, H. et al. Superflares on solar-type stars. Nature 485, 478–481 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cliver, E. W., Schrijver, C. J., Shibata, K. & Usoskin, I. G. Extreme solar events. Living Rev. Sol. Phys. 19, 2 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hathaway, D. H.The solar cycle. Living Rev. Sol. Phys. 12, 4 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biswas, A., Karak, B. B., Usoskin, I. & Weisshaar, E. Long-term modulation of solar cycles. Space Sci. Rev. 219, 19 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Adolphi, F. et al. Radiocarbon calibration uncertainties during the last deglaciation: insights from new floating tree-ring chronologies. Quat. Sci. Rev. 170, 98–108 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Raisbeck, G. M. et al. An improved north–south synchronization of ice core records around the 41 kyr 10Be peak. Clim. Past 13, 217–229 (2017).

    Article 

    Google Scholar
     

  • Turney, C. S. M. et al. High-precision dating and correlation of ice, marine and terrestrial sequences spanning Heinrich Event 3: testing mechanisms of interhemispheric change using New Zealand ancient kauri (Agathis australis). Quat. Sci. Rev. 137, 126–134 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Wacker, L. et al. Findings from an in-depth annual tree-ring radiocarbon intercomparison. Radiocarbon 62, 873–882 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hogg, A. et al. Punctuated shutdown of Atlantic meridional overturning circulation during Greenland Stadial 1. Sci. Rep. 6, 25902 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capano, M. et al. Onset of the Younger Dryas recorded with 14C at annual resolution in French subfossil trees. Radiocarbon 62, 901–918 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelmann, A. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27, 168–192 (1975).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Q. et al. Modelling cosmic radiation events in the tree-ring radiocarbon record. Proc. Math. Phys. Eng. Sci. 478, 20220497 (2022).


    Google Scholar
     

  • Golubenko, K., Rozanov, E., Kovaltsov, G. & Usoskin, I. Zonal mean distribution of cosmogenic isotope (7Be, 10Be, 14C, and 36Cl) production in stratosphere and troposphere. J. Geophys. Res. Atmos. 127, e2022JD036726 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zheng, M. et al. Modeling atmospheric transport of cosmogenic radionuclide 10Be using GEOS-Chem 14.1.1 and ECHAM6.3-HAM2.3: implications for solar and geomagnetic reconstructions. Geophys. Res. Lett. 51, e2023GL106642 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roth, R. & Joos, F. A reconstruction of radiocarbon production and total solar irradiance from the Holocene 14C and CO2 records: implications of data and model uncertainties. Clim. Past 9, 1879–1909 (2013).

    Article 

    Google Scholar
     

  • Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

    Article 

    Google Scholar
     

  • Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Basu, S. et al. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. Proc. Natl Acad. Sci. USA 117, 13300–13307 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Byrne, B. et al. National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake. Earth Syst. Sci. Data 15, 963–1004 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hua, Q. et al. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon 64, 723–745 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Delaygue, G., Bekki, S. & Bard, E. Modelling the stratospheric budget of beryllium isotopes. Tellus B Chem. Phys. Meteorol. 67, 28582 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Baroni, M., Bard, E., Petit, J.-R., Magand, O. & Bourlès, D. Volcanic and solar activity, and atmospheric circulation influences on cosmogenic 10Be fallout at Vostok and Concordia (Antarctica) over the last 60 years. Geochim. Cosmochim. Acta 75, 7132–7145 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Panovska, S., Korte, M. & Constable, C. G. One hundred thousand years of geomagnetic field evolution. Rev. Geophys. 57, 1289–1337 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Green, P. J. & Silverman, B. W. Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach (Chapman and Hall/CRC, 1993). https://doi.org/10.1201/b15710.

  • Bayliss, A. et al. IntCal20 tree rings: an archaeological Swot analysis. Radiocarbon 62, 1045–1078 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kromer, B. et al. Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294, 2529–2532 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Manning, S. W. et al. Mediterranean radiocarbon offsets and calendar dates for prehistory. Sci. Adv. 6, eaaz1096 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimak, A. & Leuenberger, M. Are carbohydrate storage strategies of trees traceable by early–latewood carbon isotope differences? Trees 29, 859–870 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Scott, E. M., Naysmith, P. & Cook, G. T. Why do we need 14C inter-comparisons?: The Glasgow –14C inter-comparison series, a reflection over 30 years. Quat. Geochronol. 43, 72–82 (2018).

    Article 

    Google Scholar
     

  • Blackwell, P. G. & Buck, C. E. Estimating radiocarbon calibration curves. Bayesian Anal. 3, 225–248 (2008).

    Article 
    MathSciNet 

    Google Scholar
     

  • Geweke, J. in Bayesian Statistics 4 (eds Bernardo, J. M. et al.) 169–194 (Oxford Univ. Press, 1992).

  • Brooks, S. P. & Roberts, G. O. Convergence assessment techniques for Markov chain Monte Carlo. Stat. Comput. 8, 319–335 (1998).

    Article 

    Google Scholar
     

  • Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Statist. Sci. 7, 457–472 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Geyer, C. J. Markov chain Monte Carlo maximum likelihood. In Computing Science and Statistics: Proc. 23rd Symposium on the Interface (ed. Keramidas, E. M.) 156–163 (Interface Foundation, 1991).

  • Robert, C. P. & Casella, G. Monte Carlo Statistical Methods (Springer, 2004). https://doi.org/10.1007/978-1-4757-4145-2.

  • Heaton, T. J. Non‐parametric calibration of multiple related radiocarbon determinations and their calendar age summarisation. J. R. Statist. Soc. C 71, 1918–1956 (2022).

    Article 
    MathSciNet 

    Google Scholar
     

  • Betancourt, M. A conceptual introduction to Hamiltonian Monte Carlo. Preprint at https://arxiv.org/abs/1701.02434 (2017).

  • Dee, M. W. & Pope, B. J. S. Anchoring historical sequences using a new source of astro-chronological tie-points. Proc. Math. Phys. Eng. Sci. 472, 20160263 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weiner, S. Microarchaeology: Beyond the Visible Archaeological Record (Cambridge Univ. Press, 2010). https://doi.org/10.1017/CBO9780511811210.

  • Waterbolk, H. T. Working with radiocarbon dates. Proc. Prehist. Soc. 37, 15–33 (1971).

    Article 

    Google Scholar
     

  • Ashmore, P. J. Radiocarbon dating: avoiding errors by avoiding mixed samples. Antiquity 73, 124–130 (1999).

    Article 

    Google Scholar
     

  • McDonald, L. & Manning, S. W. A simulation approach to quantify the parameters and limitations of the radiocarbon wiggle-match dating technique. Quat. Geochronol. 75, 101423 (2023).

    Article 

    Google Scholar
     

  • Dellaportas, P., Forster, J. J. & Ntzoufras, I. On Bayesian model and variable selection using MCMC. Stat. Comput. 12, 27–36 (2002).

    Article 
    MathSciNet 

    Google Scholar
     

  • Amaral Turkman, M. A., Paulino, C. D. & Müller, P. Computational Bayesian Statistics (Cambridge Univ. Press, 2019). https://doi.org/10.1017/9781108646185.

  • Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Raukunen, O., Usoskin, I., Koldobskiy, S., Kovaltsov, G. & Vainio, R. Annual integral solar proton fluences for 1984–2019. Astron. Astrophys. 665, A65 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mook, W. G. Business meeting: recommendations/resolutions adopted by the Twelfth International Radiocarbon Conference. Radiocarbon 28, 799 (1986).

    Article 

    Google Scholar
     

  • Stuiver, M. & Polach, H. A. Discussion reporting of 14C data. Radiocarbon 19, 355–363 (1977).

    Article 

    Google Scholar
     

  • Miyake, F. et al. Verification of the cosmic-ray event in ad 993–994 by using a Japanese hinoki tree. Radiocarbon 56, 1189–1194 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Oswald, A. Clay Pipes for the Archaeologist (BAR, 1975).

  • AlQahtani, S. J., Hector, M. P. & Liversidge, H. M. Brief communication: the London atlas of human tooth development and eruption. Am. J. Phys. Anthropol. 142, 481–490 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bronk Ramsey, C. Development of the radiocarbon calibration program. Radiocarbon 43, 355–363 (2001).

    Article 

    Google Scholar
     

  • Reimer, P. J. & Reimer, R. W. A marine reservoir correction database and on-line interface. Radiocarbon 43, 461–463 (2001).

    Article 

    Google Scholar
     



  • Source link


    administrator