• Patel, Z. S. et al. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. npj Microgravity 6, 33 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sishc, B. J. et al. The need for biological countermeasures to mitigate the risk of space radiation-induced carcinogenesis, cardiovascular disease, and central nervous system deficiencies. Life Sci. Space Res. 35, 4–8 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Parsons, J. L. & Townsend, L. W. Interplanetary crew dose rates for the August 1972 solar particle event. Radiat. Res. 153, 729–733 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mewaldt, R. A. et al. Record-setting cosmic-ray intensities in 2009 and 2010. Astrophys. J. Lett 723, L1 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Selesnick, R. S., Baker, D. N., Kanekal, S. G., Hoxie, V. C. & Li, X. Modeling the proton radiation belt with Van Allen Probes relativistic electron-proton telescope data. J. Geophys. Res. Space Phys. 123, 685–697 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Desai, M. & Giacalone, J. Large gradual solar energetic particle events. Living Rev. Sol. Phys. 13, 3 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeitlin, C. et al. Results from the Radiation Assessment Detector on the International Space Station: part 1, the Charged Particle Detector. Life Sci. Space Res. 39, 67–75 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Berger, T. et al. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016. J. Space Weather Space Clim. 7, A8 (2017).

    Article 

    Google Scholar
     

  • Zeitlin, C. et al. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory. Science 340, 1080–1084 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schwadron, N. A. et al. Update on the worsening particle radiation environment observed by CRaTER and implications for future human deep-space exploration. Space Weather 16, 289–303 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Schaefer, H. J., Benton, E. V., Henke, R. P. & Sullivan, J. J. Nuclear track recordings of the astronauts’ radiation exposure on the first lunar landing mission Apollo XI. Radiat. Res. 49, 245–271 (1972).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • English, R. A., Benson, R. E., Bailey, J. V. & Barnes, C. M. Apollo experience report: protection against radiation. NASA https://ntrs.nasa.gov/citations/19730010172 (1973).

  • Fleischer, R. L. et al. Apollo 14 and Apollo 16 heavy-particle dosimetry experiments. Science 181, 436–438 (1973).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huff, J. L. et al. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory—progress, challenges and recommendations on mixed-field effects. Life Sci. Space Res. 36, 90–104 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Gaza, R. et al. Orion EM-1 Internal Environment Characterization: The Matroshka AstroRad Radiation Experiment (NASA, 2019); https://ntrs.nasa.gov/citations/20190026525.

  • Berger, T. et al. NASA Artemis I mission and the MARE Experiment (NASA, 2023); https://wrmiss.org/workshops/twentysixth/Berger_MARE.pdf.

  • Stoffle, N. N. et al. HERA: a Timepix-based radiation detection system for Exploration-class space missions. Life Sci. Space Res. 39, 59–65 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Straube, U., Berger, T. & Dieckmann, M. The ESA Active Dosimeter (EAD) system onboard the International Space Station (ISS). Z. Med. Phys. 34, 111–139 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Berger, T. et al. The German Aerospace Center M-42 radiation detector—a new development for applications in mixed radiation fields. Rev. Sci. Instrum. 90, 125115 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gaza, R. et al. The importance of time-resolved personal dosimetry in space: the ISS Crew Active Dosimeter. Life Sci. Space Res. 39, 95–105 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Cucinotta, F. A. et al. Space radiation cancer risks and uncertainties for Mars missions. Radiat. Res. 156, 682–688 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mertens, C. J., Slaba, T. C. & Hu, S. Active dosimeter-based estimate of astronaut acute radiation risk for real-time solar energetic particle events. Space Weather 16, 1291–1316 (2018).

    Article 
    ADS 

    Google Scholar
     

  • NASA Space Flight Human-System Standard: Volume 1: Crew Health (NASA, 2022); https://www.nasa.gov/sites/default/files/atoms/files/2022-01-05_nasa-std-3001_vol.1_rev._b_final_draft_with_signature_010522.pdf.

  • Allen, J., Sauer, H., Frank, L. & Reiff, P. Effects of the March 1989 solar activity. Eos Trans. Am. Geophys. Union 70, 1479–1488 (1989).

    Article 
    ADS 

    Google Scholar
     

  • Hu, S. & Semones, E. A Multi-Source Calibrated GOES Dataset and Solar Radiation Environment Model Update (NASA, 2022); https://ntrs.nasa.gov/citations/20220008181.

  • O’Brien, T. P. et al. Changes in AE9/AP9-IRENE version 1.5. IEEE Trans. Nucl. Sci. 65, 462–466 (2018).

    Article 
    ADS 

    Google Scholar
     

  • van den Berg, J., Strauss, D. T. & Effenberger, F. A primer on focused solar energetic particle transport. Space Sci. Rev. 216, 146 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wilson, J. W., Slaba, T. C., Badavi, F. F., Reddell, B. D. & Bahadori, A. A. Advances in NASA radiation transport research: 3DHZETRN. Life Sci. Space Res. 2, 6–22 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Slaba, T. C., Wilson, J. W., Werneth, C. M. & Whitman, K. Updated deterministic radiation transport for future deep space missions. Life Sci. Space Res. 27, 6–18 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Norbury, J. W., Slaba, T. C., Sobolevsky, N. & Reddell, B. Comparing HZETRN, SHIELD, FLUKA and GEANT transport codes. Life Sci. Space Res. 14, 64–73 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Singleterry, R. C. et al. OLTARIS: on-line tool for the assessment of radiation in space. Acta Astronaut. 68, 1086–1097 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Slaba, T. C. & Whitman, K. The Badhwar-O’Neill 2020 GCR model. Space Weather 18, e2020SW002456 (2020).

    Article 
    ADS 

    Google Scholar
     

  • International Commission on Radiological Protection 1990 Recommendations of the International Commission on Radiological Protection ICRP Publication 60 (Pergamon Press, 1991).

  • National Academies of Sciences Space Radiation and Astronaut Health: Managing and Communicating Cancer Risks (National Academies Press, 2021); https://doi.org/10.17226/26155.

  • Drake, B. G., Hoffman, S. J. & Beaty, D. W. Human exploration of Mars, Design Reference Architecture 5.0. In Proc. 2010 IEEE Aerospace Conference 1–24 (IEEE, 2010).

  • Hassler, D. M. et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science 343, 1244797 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Natural radiation in Germany. Federal Office for Radiation Protection https://www.bfs.de/EN/topics/ion/environment/natural-radiation/natural-radiation.html (2023).

  • Matthiä, D., Burmeister, S., Przybyla, B. & Berger, T. Active radiation measurements over one solar cycle with two DOSTEL instruments in the Columbus laboratory of the International Space Station. Life Sci. Space Res. 39, 14–25 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. et al. First measurements of the radiation dose on the lunar surface. Sci. Adv. 6, eaaz1334 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeitlin, C. et al. Measurements of radiation quality factor on Mars with the Mars Science Laboratory Radiation Assessment Detector. Life Sci. Space Res. 22, 89–97 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Llopart, X., Ballabriga, R., Campbell, M., Tlustos, L. & Wong, W. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instrum. Methods Phys. Res. A 581, 485–494 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ballabriga, R., Campbell, M. & Llopart, X. An introduction to the Medipix family ASICs. Radiat. Meas. 136, 106271 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Holy, T. et al. Pattern recognition of tracks induced by individual quanta of ionizing radiation in Medipix2 silicon detector. Nucl. Instrum. Methods Phys. Res. A 591, 287–290 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jakubek, J. Precise energy calibration of pixel detector working in time-over-threshold mode. Nucl. Instrum. Methods Phys. Res. A 633, S262–S266 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kroupa, M., Campbell-Ricketts, T., Bahadori, A. & Empl, A. Techniques for precise energy calibration of particle pixel detectors. Rev. Sci. Instrum. 88, 033301 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • George, S. P. et al. Very high energy calibration of silicon Timepix detectors. J. Instrum. 13, P11014 (2018).

    Article 

    Google Scholar
     



  • Source link


    administrator