• Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Osman, A. et al. Mitigation of frequency collisions in superconducting quantum processors. Phys. Rev. Res. 5, 043001 (2023).

    Article 
    CAS 

    Google Scholar
     

  • de Leon, N. P. et al. Materials challenges and opportunities for quantum computing hardware. Science 372, eabb2823 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kosen, S. et al. Building blocks of a flip-chip integrated superconducting quantum processor. Quantum Sci. Technol. 7, 035018 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Bravyi, S. et al. High-threshold and low-overhead fault-tolerant quantum memory. Nature 627, 778–782 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Acharya, R. et al. Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer. Nat. Electron. 6, 900–909 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Siddiqi, I. Engineering high-coherence superconducting qubits. Nat. Rev. Mater. 6, 875–891 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Ding, L. et al. High-fidelity, frequency-flexible two-qubit fluxonium gates with a transmon coupler. Phys. Rev. X 13, 031035 (2023).

    CAS 

    Google Scholar
     

  • Zhao, Y. et al. Realization of an error-correcting surface code with superconducting qubits. Phys. Rev. Lett. 129, 030501 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Ni, Z. et al. Beating the break-even point with a discrete-variable-encoded logical qubit. Nature https://doi.org/10.1038/s41586-023-05784-4 (2023).

  • Miao, K. C. et al. Overcoming leakage in quantum error correction. Nat. Phys. https://doi.org/10.1038/s41567-023-02226-w (2023).

  • Koch, J. et al. Charge insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Wu, Y.-L. et al. Fabrication of Al/AlOx/Al Josephson junctions and superconducting quantum circuits by shadow evaporation and a dynamic oxidation process. Chin. Phys. B 22, 060309 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zeng, L., Tran, D. T., Tai, C.-W., Svensson, G. & Olsson, E. Atomic structure and oxygen deficiency of the ultrathin aluminium oxide barrier in Al/AlOx/Al Josephson junctions. Sci. Rep. 6, 29679 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cyster, M. J. et al. Simulating the fabrication of aluminium oxide tunnel junctions. npj Quantum Inf. 7, 12 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Place, A. P. M. et al. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. 12, 1779 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, C. et al. Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf. 8, 3 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kono, S. et al. Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 ms. Nat. Commun. 15, 3950 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jurcevic, P. et al. Demonstration of quantum volume 64 on a superconducting quantum computing system. Quantum Sci. Technol. 6, 025020 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 5, 184–190 (2022).

    Article 

    Google Scholar
     

  • Neyens, S. et al. Probing single electrons across 300-mm spin qubit wafers. Nature 629, 80–85 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. Challenges and recent prospectives of 3D heterogeneous integration. e-Prime Adv. Electr. Eng. Electron. Energy 2, 100052 (2022).

    Article 

    Google Scholar
     

  • Wan, D. et al. Fabrication and room temperature characterization of trilayer junctions for the development of superconducting qubits on 300 mm wafers. Jpn. J. Appl. Phys. 60, SBBI04 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. et al. Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate. Commun. Mater. 2, 98 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Anferov, A., Lee, K.-H., Zhao, F., Simon, J. & Schuster, D. I. Improved coherence in optically defined niobium trilayer-junction qubits. Phys. Rev. Appl. 21, 024047 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Foroozani, N. et al. Development of transmon qubits solely from optical lithography on 300 mm wafers. Quantum Sci. Technol. 4, 025012 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Verjauw, J. et al. Path toward manufacturable superconducting qubits with relaxation times exceeding 0.1 ms. npj Quantum Inf. 8, 93 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Yost, D. R. W. et al. Solid-state qubits integrated with superconducting through-silicon vias. npj Quantum Inf. 6, 59 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Stehli, A. et al. Coherent superconducting qubits from a subtractive junction fabrication process. Appl. Phys. Lett. 117, 124005 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, X. et al. Overlap junctions for high coherence superconducting qubits. Appl. Phys. Lett. 111, 032602 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Van Damme, J. et al. Argon-milling-induced decoherence mechanisms in superconducting quantum circuits. Phys. Rev. Appl. 20, 014034 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Schlör, S. et al. Correlating decoherence in transmon qubits: low frequency noise by single fluctuators. Phys. Rev. Lett. 123, 190502 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Burnett, J. J. et al. Decoherence benchmarking of superconducting qubits. npj Quantum Inf. 5, 54 (2019).

  • Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. https://doi.org/10.1088/0034-4885/50/12/003 (1987).

  • Müller, C., Lisenfeld, J., Shnirman, A. & Poletto, S. Interacting two-level defects as sources of fluctuating high-frequency noise in superconducting circuits. Phys. Rev. B 92, 035442 (2015).

  • Klimov, P. V. et al. Fluctuations of energy-relaxation times in superconducting qubits. Phys. Rev. Lett. 121, 090502 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thorbeck, T., Eddins, A., Lauer, I., McClure, D. T. & Carroll, M. Two-level-system dynamics in a superconducting qubit due to background ionizing radiation. PRX Quantum 4, 020356 (2023).

    Article 
    ADS 

    Google Scholar
     

  • de Graaf, S. E. et al. Two-level systems in superconducting quantum devices due to trapped quasiparticles. Sci. Adv. 6, eabc5055 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murray, C. E., Gambetta, J. M., McClure, D. T. & Steffen, M. Analytical determination of participation in superconducting coplanar architectures. IEEE Trans. Microw. Theory Tech. 66, 3724–3733 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Woods, W. et al. Determining interface dielectric losses in superconducting coplanar-waveguide resonators. Phys. Rev. Appl. 12, 014012 (2019).

  • Melville, A. et al. Comparison of dielectric loss in titanium nitride and aluminum superconducting resonators. Appl. Phys. Lett. 117, 124004 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bal, M. et al. Systematic improvements in transmon qubit coherence enabled by niobium surface encapsulation. npj Quantum Inf. 10, 43 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Bilmes, A., Volosheniuk, S., Ustinov, A. V. & Lisenfeld, J. Probing defect densities at the edges and inside Josephson junctions of superconducting qubits. npj Quantum Inf. 8, 24 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Martinis, J. M. et al. Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mamin, H. J. et al. Merged-element transmons: design and qubit performance. Phys. Rev. Appl. 16, 024023 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carroll, M., Rosenblatt, S., Jurcevic, P., Lauer, I. & Kandala, A. Dynamics of superconducting qubit relaxation times. npj Quantum Inf. 8, 132 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ambegaokar, V. & Baratoff, A. Tunneling between superconductors. Phys. Rev. Lett. 10, 486–489 (1963).

    Article 
    ADS 

    Google Scholar
     

  • Osman, A. et al. Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits. Appl. Phys. Lett. 118, 064002 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pishchimova, A. A. et al. Improving Josephson junction reproducibility for superconducting quantum circuits: junction area fluctuation. Sci. Rep. 13, 6772 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moskalev, D. O. et al. Optimization of shadow evaporation and oxidation for reproducible quantum Josephson junction circuits. Sci. Rep. 13, 4174 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koppinen, P. J., Väistö, L. M. & Maasilta, I. J. Complete stabilization and improvement of the characteristics of tunnel junctions by thermal annealing. Appl. Phys. Lett. 90, 053503 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Kim, H. et al. Effects of laser-annealing on fixed-frequency superconducting qubits. Appl. Phys. Lett. 121, 142601 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pop, I. M. et al. Fabrication of stable and reproducible submicron tunnel junctions. J. Vac. Sci. Technol. B 30, 010607 (2012).

    Article 

    Google Scholar
     

  • Shiota, T., Imamura, T. & Hasuo, S. Fabrication of high quality Nb/AlO/sub /x-Al/Nb Josephson junctions. III. Annealing stability of AlO/sub /x tunneling barriers. IEEE Trans. Appl. Supercond. 2, 222–227 (1992).

    Article 
    ADS 

    Google Scholar
     

  • Hertzberg, J. B. et al. Laser-annealing Josephson junctions for yielding scaled-up superconducting quantum processors. npj Quantum Inf. 7, 129 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Van Damme, J. Advanced CMOS manufacturing of superconducting qubits on 300 mm wafers. Zenodo https://doi.org/10.5281/zenodo.13143313 (2024).



  • Source link


    administrator