• Baskaran, G. & Anderson, P. W. Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Phys. Rev. B 37, 580–583 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Emergent electromagnetism in solids. Phys. Scr. 2012, 014020 (2012).

    Article 

    Google Scholar
     

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zang, J., Mostovoy, M., Han, J. H. & Nagaosa, N. Dynamics of skyrmion crystals in metallic thin films. Phys. Rev. Lett. 107, 136804 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet. Science 365, 914–918 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirschberger, M. et al. High-field depinned phase and planar Hall effect in the skyrmion host Gd2PdSi3. Phys. Rev. B 101, 220401 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cohen, E. et al. Geometric phase from Aharonov–Bohm to Pancharatnam–Berry and beyond. Nat. Rev. Phys. 1, 437–449 (2019).

    Article 

    Google Scholar
     

  • Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A Lond. Math. Phys. Sci. 392, 45–57 (1997).

    ADS 
    MathSciNet 

    Google Scholar
     

  • Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Ohgushi, K., Murakami, S. & Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on a ferromagnet. Phys. Rev. B 62, R6065–R6068 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taguchi, Y., Oohara, Y., Yoshizawa, H., Nagaosa, N. & Tokura, Y. Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferromagnet. Science 291, 2573–2576 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagaosa, N. Emergent inductor by spiral magnets. Jpn. J. Appl. Phys. 58, 120909 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yokouchi, T. et al. Emergent electromagnetic induction in a helical-spin magnet. Nature 586, 232–236 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Heinze, S. et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 7, 713–718 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsui, A., Nomoto, T. & Arita, R. Skyrmion-size dependence of the topological Hall effect: A real-space calculation. Phys. Rev. B 104, 174432 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kimbell, G., Kim, C., Wu, W., Cuoco, M. & Robinson, J. W. A. Challenges in identifying chiral spin textures via the topological Hall effect. Commun. Mater. 3, 19 (2022).

    Article 

    Google Scholar
     

  • Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Juge, R. et al. Current-driven skyrmion dynamics and drive-dependent skyrmion Hall effect in an ultrathin film. Phys. Rev. Appl. 12, 044007 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Peng, L. et al. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet. Nat. Commun. 12, 6797 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirschberger, M. et al. Skyrmion phase and competing magnetic orders on a breathing kagomé lattice. Nat. Commun. 10, 5831 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khanh, N. D. et al. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat. Nanotechnol. 15, 444–449 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Takagi, R. et al. Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound. Nat. Commun. 13, 1472 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okubo, T., Chung, S. & Kawamura, H. Multiple-q states and the skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. Phys. Rev. Lett. 108, 017206 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Leonov, A. O. & Mostovoy, M. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet. Nat. Commun. 6, 8275 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Inosov, D. S. et al. Electronic structure and nesting-driven enhancement of the RKKY interaction at the magnetic ordering propagation vector in Gd2PdSi3 and Tb2PdSi3. Phys. Rev. Lett. 102, 046401 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayami, S. & Motome, Y. Multiple-Q instability by (d − 2)-dimensional connections of Fermi surfaces. Phys. Rev. B 90, 060402 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Z., Barros, K., Chern, G.-W., Maslov, D. L. & Batista, C. D. Resistivity minimum in highly frustrated itinerant magnets. Phys. Rev. Lett. 117, 206601 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schütte, C., Iwasaki, J., Rosch, A. & Nagaosa, N. Inertia, diffusion, and dynamics of a driven skyrmion. Phys. Rev. B 90, 174434 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

    Article 
    ADS 

    Google Scholar
     

  • Metaxas, P. J. et al. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderson, P. W. & Kim, Y. B. Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev. Mod. Phys. 36, 39–43 (1964).

    Article 
    ADS 

    Google Scholar
     

  • Fröhlich, H. On the theory of superconductivity: the one-dimensional case. Proc. R. Soc. A Lond. Ser. Math. Phys. Eng. Sci. 223, 296–305 (1954).

    ADS 

    Google Scholar
     

  • Lee, P. A., Rice, T. M. & Anderson, P. W. Conductivity from charge or spin density waves. Solid State Commun. 14, 703–709 (1974).

    Article 
    ADS 

    Google Scholar
     

  • Psaroudaki, C., Hoffman, S., Klinovaja, J. & Loss, D. Quantum dynamics of skyrmions in chiral magnets. Phys. Rev. X 7, 041045 (2017).


    Google Scholar
     

  • Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Büttner, F. et al. Dynamics and inertia of skyrmionic spin structures. Nat. Phys. 11, 225–228 (2015).

    Article 

    Google Scholar
     

  • Birch, M. T. Dataset for: Dynamic transition and Galilean relativity of current-driven skyrmions. Zenodo https://doi.org/10.5281/zenodo.11408317 (2024).



  • Source link


    administrator