• McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McPhaden, M. J., Santoso, A. & Cai, W. in El Niño Southern Oscillation in a Changing Climate, Geophysical Monographs 1–19 (eds McPhaden, M. J. et al.) (Wiley, 2020).

  • Cobb, K. M. et al. Highly variable El Nino–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Z. et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years. Nature 515, 550–553 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Z., Liu, Z., Zhu, J. & Cobb, K. M. A review of Paleo El Niño-Southern Oscillation. Atmosphere 9, 130 (2018).

    Article 
    ADS 

    Google Scholar
     

  • McPhaden, M. J. Genesis and evolution of the 1997-98 El Niño. Science 283, 950–954 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Santoso, A., Mcphaden, M. J. & Cai, W. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev. Geophys. 55, 1079–1129 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Glynn, P. W. El Niño-Southern Oscillation 1982-1983: nearshore population, community, and ecosystem responses. Annu. Rev. Ecol. Evol. Syst. 19, 309–346 (1988).

    Article 

    Google Scholar
     

  • Thirumalai, K., DiNezio, P. N., Okumura, Y. & Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 8, 15531 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 5, 111–116 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Emile-Geay, J. & Tingley, M. Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies. Clim. Past 12, 31–50 (2016).

    Article 

    Google Scholar
     

  • Ford, H. L., Ravelo, A. C. & Polissar, P. J. Reduced El Niño–Southern Oscillation during the Last Glacial Maximum. Science 347, 255–258 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sadekov, A. Y. et al. Palaeoclimate reconstructions reveal a strong link between El Niño-Southern Oscillation and Tropical Pacific mean state. Nat. Commun. 4, 2692 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Leduc, G., Vidal, L., Cartapanis, O. & Bard, E. Modes of eastern equatorial Pacific thermocline variability: implications for ENSO dynamics over the last glacial period. Paleoceanography 24, PA3202 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Rustic, G. T., Polissar, P. J., Ravelo, A. C. & White, S. M. Modulation of late Pleistocene ENSO strength by the tropical Pacific thermocline. Nat. Commun. 11, 5377 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DiNezio, P. N., Deser, C., Okumura, Y. & Karspeck, A. Predictability of 2-year La Niña events in a coupled general circulation model. Clim. Dyn. 49, 4237–4261 (2017).

    Article 

    Google Scholar
     

  • Zhu, J. et al. Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model. Geophys. Res. Lett. 44, 6984–6992 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Koutavas, A. & Joanides, S. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 27, PA4208 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Thirumalai, K., Partin, J. W., Jackson, C. S. & Quinn, T. M. Statistical constraints on El Niño Southern Oscillation reconstructions using individual foraminifera: a sensitivity analysis. Paleoceanography 28, 401–412 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Emile-Geay, J. et al. Links between tropical Pacific seasonal, interannual and orbital variability during the Holocene. Nat. Geosci. 9, 168–173 (2015).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Carré, M. et al. High-resolution marine data and transient simulations support orbital forcing of ENSO amplitude since the mid-Holocene. Quat. Sci. Rev. 268, 107125 (2021).

    Article 

    Google Scholar
     

  • Lawman, A. E. et al. Unraveling forced responses of extreme El Niño variability over the Holocene. Sci. Adv. 8, eabm4313 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310–314 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Glaubke, R. H. et al. An inconsistent ENSO response to Northern Hemisphere stadials over the last deglaciation. Geophys. Res. Lett. 51, e2023GL107634 (2024).

    Article 

    Google Scholar
     

  • Lakhani, K. Q., Lynch-Stieglitz, J. & Monteagudo, M. M. Constraining calcification habitat using oxygen isotope measurements in tropical planktonic foraminiferal tests from surface sediments. Mar. Micropaleontol. 170, 102074 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lynch-Stieglitz, J. et al. Glacial-interglacial changes in central tropical Pacific surface seawater property gradients. Paleoceanography 30, 423–438 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Jin, F. F. Tropical ocean-atmosphere interaction, the Pacific cold tongue, and the El Niño-Southern Oscillation. Science 274, 76–78 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Puy, M., Vialard, J., Lengaigne, M. & Guilyardi, E. Modulation of equatorial Pacific westerly/easterly wind events by the Madden–Julian oscillation and convectively-coupled Rossby waves. Clim. Dyn. 46, 2155–2178 (2015).

    Article 

    Google Scholar
     

  • Xue, Y. & Kumar, A. Evolution of the 2015/16 El Niño and historical perspective since 1979. Sci. Chn. Earth Sci. 60, 1572–1588 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical circulation. J. Clim. 20, 4316–4340 (2007).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N., Gramer, L. J., Johns, W. E., Meinen, C. S. & Baringer, M. O. Observed interannual variability of the Florida current: wind forcing and the North Atlantic Oscillation. J. Phys. Oceanogr. 39, 721–736 (2009).

    Article 
    ADS 

    Google Scholar
     

  • An, S.-I. & Jin, F.-F. Nonlinearity and asymmetry of ENSO. J. Clim. 17, 2399–2412 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Callahan, C. W. et al. Robust decrease in El Niño/Southern Oscillation amplitude under long-term warming. Nat. Clim. Change 11, 752–757 (2021).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N. et al. Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Clim. 25, 7399–7420 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Heede, U.K. & Fedorov, A. V. Towards understanding the robust strengthening of ENSO and more frequent extreme El Niño events in CMIP6 global warming simulations. Clim. Dyn. 61, 3047–3060 (2023).


    Google Scholar
     

  • Brown, J. R. et al. Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models. Clim. Past 16, 1777–1805 (2020).

    Article 

    Google Scholar
     

  • Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Change 11, 27–32 (2021).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N. et al. The response of the Walker circulation to Last Glacial Maximum forcing: implications for detection in proxies. Paleoceanography 26, PA3217 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Ford, H. L., McChesney, C. L., Hertzberg, J. E. & McManus, J. F. A deep eastern equatorial Pacific thermocline during the Last Glacial Maximum. Geophys. Res. Lett. 45, 11,806–11,816 (2018).

    Article 

    Google Scholar
     

  • Andreasen, D. J. & Ravelo, A. C. Tropical Pacific Ocean thermocline depth reconstructions for the Last Glacial Maximum. Paleoceanography 12, 395–413 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Hollstein, M. et al. Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110,000 years: forcing mechanisms and implications for the glacial Walker circulation. Quat. Sci. Rev. 201, 429–445 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Monteagudo, M. M., Lynch‐Stieglitz, J., Marchitto, T. M. & Schmidt, M. W. Central equatorial Pacific cooling during the last glacial maximum. Geophys. Res. Lett. 48, e2020GL088592 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tierney, J. E. et al. Glacial cooling and climate sensitivity revisited. Nature 584, 569–573 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cooper, V. T. et al. Last Glacial Maximum pattern effects reduce climate sensitivity estimates. Sci. Adv. 10, eadk9461 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McPhaden, M. J. & Yu, X. Equatorial waves and the 1997–98 El Niño. Geophys. Res. Lett. 26, 2961–2964 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Kessler, W. S. Is ENSO a cycle or a series of events? Geophys. Res. Lett. 29, 40-1–40-4 (2002).

    Article 

    Google Scholar
     

  • DiNezio, P. N. & Deser, C. Nonlinear controls on the persistence of La Niña. J. Clim. 27, 7335–7355 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Wittenberg, A. T. Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett. 36, L12702 (2009).

    Article 
    ADS 

    Google Scholar
     

  • L’Heureux, M. L., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Clim. Change 3, 571–576 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Tierney, J. E., Haywood, A. M., Feng, R., Bhattacharya, T. & Otto‐Bliesner, B. L. Pliocene Warmth Consistent With Greenhouse Gas Forcing. Geophys. Res. Lett. 46, 9136–9144 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Glaubke, R. H., Thirumalai, K., Schmidt, M. W. & Hertzberg, J. E. Discerning Changes in High-Frequency Climate Variability Using Geochemical Populations of Individual Foraminifera. Paleoceanogr. Paleoclimatol. 36, e2020PA004065 (2021).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, eaat9658 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Argus, D. F., Peltier, W. R., Drummond, R. & Moore, A. W. The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys. J. Int. 198, 537–563 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the global ICE‐6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Brady, E. C., Otto-Bliesner, B. L., Kay, J. E. & Rosenbloom, N. Sensitivity to glacial forcing in the CCSM4. J. Clim. 26, 1901–1925 (2013).

    Article 
    ADS 

    Google Scholar
     

  • DiNezio, P. N. et al. The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanography 31, 866–894 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Waelbroeck, C. et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 21, 295–305 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Huang, B. et al. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Costa, K. M. et al. No iron fertilization in the equatorial Pacific Ocean during the last ice age. Nature 529, 519–522 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thirumalai, K., Cohen, A. S. & Taylor, D. Hydrologic controls on individual ostracode stable isotopes in a desert lake: a modern baseline for Lake Turkana. Geochem. Geophys. Geosyst. 24, e2022GC010790 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Montávez, N. B., Thirumalai, K. & Marino, G. Shell reworking impacts on climate variability reconstructions using individual foraminiferal analyses. Paleoceanogr. Paleoclimatol. 39, e2023PA004663 (2024).

    Article 

    Google Scholar
     

  • Thirumalai, K. & Maupin, C. R. Chasing interannual marine paleovariability. Paleoceanogr. Paleoclimatol. 38, e2023PA004723 (2023).

    Article 
    ADS 

    Google Scholar
     

  • White, S. M., Ravelo, A. C. & Polissar, P. J. Dampened El Niño in the early and mid-Holocene due to insolation-forced warming/deepening of the thermocline. Geophys. Res. Lett. 45, 316–326 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Hollstein, M. et al. Stable oxygen isotopes and Mg/Ca in planktic foraminifera from modern surface sediments of the Western Pacific Warm Pool: implications for thermocline reconstructions. Paleoceanography 32, 1174–1194 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Ray, S., Wittenberg, A. T., Griffies, S. M. & Zeng, F. Understanding the equatorial Pacific cold tongue time-mean heat budget. Part I: diagnostic framework. J. Clim. 31, 9965–9985 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Deser, C. et al. ENSO and Pacific decadal variability in the Community Climate System Model version 4. J. Clim. 25, 2622–2651 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, S. et al. Thermal coupling of the Indo-Pacific warm pool and Southern Ocean over the past 30,000 years. Nat. Commun. 13, 5457 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Timmermann, A., Sachs, J. & Timm, O. E. Assessing divergent SST behavior during the last 21 ka derived from alkenones and G. ruber‐Mg/Ca in the equatorial Pacific. Paleoceanography 29, 680–696 (2014).

    Article 
    ADS 

    Google Scholar
     

  • MARGO Project Members. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nat. Geosci. 2, 127–132 (2009).

  • Tierney, J. E. & Tingley, M. P. BAYSPLINE: a new calibration for the alkenone paleothermometer. Paleoceanogr. Paleoclimatol. 33, 281–301 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Tierney, J. E., Malevich, S. B., Gray, W., Vetter, L. & Thirumalai, K. Bayesian calibration of the Mg/Ca paleothermometer in planktic foraminifera. Paleoceanogr. Paleoclimatol. 34, 2005–2030 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Sagawa, T., Yokoyama, Y., Ikehara, M. & Kuwae, M. Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera. Palaeogeogr. Palaeoclimatol. Palaeoecol. 346–347, 120–129 (2012).

    Article 

    Google Scholar
     

  • Leech, P. J., Lynch-Stieglitz, J. & Zhang, R. Western Pacific thermocline structure and the Pacific marine Intertropical Convergence Zone during the Last Glacial Maximum. Earth Planet. Sci. Lett. 363, 133–143 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thirumalai, K. Holocene and glacial individual foraminiferal analyses (IFA) of stable isotopes in Globigerinoides ruber tests from Line Islands sediment cores (central equatorial Pacific) (v.1). Zenodo https://doi.org/10.5281/zenodo.12744812 (2024).

  • Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • McKinney, W. Data structures for statistical computing in Python. In Proc. 9th Python in Science Conference 56–61 (SciPy, 2010).

  • Oliphant, T. E. Guide to NumPy (CreateSpace, 2006).

  • Michael, W. A. et al. Seaborn v.0.9.0. Seaborn https://seaborn.pydata.org/whatsnew/v0.9.0.html (2018).

  • Hoyer, S. & Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. 5, 10 (2017).

    Article 

    Google Scholar
     

  • Office, M. Cartopy: a cartographic python library with a Matplotlib interface. Cartopy http://scitools.org.uk/cartopy (2010–2017).

  • Jones, E., Oliphnat, T. & Peterson, P. SciPy: open source scientific tools for Python. SciPy http://www.scipy.org (2001).

  • DiNezio, P. CESM1.2 simulations of Tropical Pacific heat budget and other properties across Pleistocene and Holocene climatic boundary intervals. Zenodo https://doi.org/10.5281/zenodo.12832365 (2024).

  • Thirumalai, K. & DiNezio, P. (2024). Codes and data files for analysis presented in Thirumalai & DiNezio et al. (2024, Nature). Zenodo https://doi.org/10.5281/zenodo.12849829 (2024).



  • Source link


    administrator