Imawaki, S., Bower, A. S., Beal, L. & Qiu, B. in International Geophysics Vol. 103, 305–338 (Elsevier, 2013).
Chelton, D. B., Schlax, M. G., Freilich, M. H. & Milliff, R. F. Satellite measurements reveal persistent small-scale features in ocean winds. Science 303, 978–983 (2004).
O’Neill, L. W., Chelton, D. B., Esbensen, S. K. & Wentz, F. J. High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas return current. J. Clim. 18, 2706–2723 (2005).
Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S.-P. & Small, R. J. Influence of the Gulf Stream on the troposphere. Nature 452, 206–209 (2008).
Minobe, S., Miyashita, M., Kuwano-Yoshida, A., Tokinaga, H. & Xie, S.-P. Atmospheric response to the Gulf Stream: seasonal variations. J. Clim. 23, 3699–3719 (2010).
Chelton, D. & Xie, S.-P. Coupled Ocean-Atmosphere Interaction at Oceanic Mesoscales. Oceanography 23, 52–69 (2010).
Hoskins, B. J. & Valdes, P. J. On the existence of storm-tracks. J. Atmos. Sci. 47, 1854–1864 (1990).
Nakamura, H., Sampe, T., Tanimoto, Y. & Shimpo, A. in Geophysical Monograph Series (eds Wang, C. et al.) 329–345 (American Geophysical Union, 2004).
Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W. & Xie, S.-P. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett. 35, 2008GL034010 (2008).
Woollings, T., Hoskins, B., Blackburn, M., Hassell, D. & Hodges, K. Storm track sensitivity to sea surface temperature resolution in a regional atmosphere model. Clim. Dyn. 35, 341–353 (2010).
Hu, D. et al. Pacific western boundary currents and their roles in climate. Nature 522, 299–308 (2015).
Czaja, A., Frankignoul, C., Minobe, S. & Vannière, B. Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions? Curr. Clim. Change Rep. 5, 390–406 (2019).
Seo, H. et al. Ocean mesoscale and frontal-scale ocean–atmosphere interactions and influence on large-scale climate: a review. J. Clim. 36, 1981–2013 (2023).
Kushnir, Y. et al. Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J. Clim. 15, 2233–2256 (2002).
Frenger, I., Gruber, N., Knutti, R. & Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 6, 608–612 (2013).
Liu, X., Chang, P., Kurian, J., Saravanan, R. & Lin, X. Satellite-observed precipitation response to ocean mesoscale eddies. J. Clim. 31, 6879–6895 (2018).
Kwon, Y.-O. & Joyce, T. M. Northern Hemisphere Winter Atmospheric Transient Eddy Heat Fluxes and the Gulf Stream and Kuroshio–Oyashio Extension Variability. J. Clim. 26, 9839–9859 (2013).
O’Reilly, C. H. & Czaja, A. The response of the Pacific storm track and atmospheric circulation to Kuroshio Extension variability. Quart. J. R. Meteorol. Soc. 141, 52–66 (2015).
Smirnov, D., Newman, M., Alexander, M. A., Kwon, Y.-O. & Frankignoul, C. Investigating the local atmospheric response to a realistic shift in the Oyashio sea surface temperature front. J. Clim. 28, 1126–1147 (2015).
Parfitt, R., Czaja, A., Minobe, S. & Kuwano‐Yoshida, A. The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett. 43, 2299–2306 (2016).
Wills, S. M., Thompson, D. W. J. & Ciasto, L. M. On the observed relationships between variability in Gulf Stream sea surface temperatures and the atmospheric circulation over the North Atlantic. J. Clim. 29, 3719–3730 (2016).
Wills, S. M. & Thompson, D. W. J. On the observed relationships between wintertime variability in Kuroshio–Oyashio extension sea surface temperatures and the atmospheric circulation over the North Pacific. J. Clim. 31, 4669–4681 (2018).
Joyce, T. M., Kwon, Y., Seo, H. & Ummenhofer, C. C. Meridional Gulf Stream shifts can influence wintertime variability in the North Atlantic storm track and Greenland blocking. Geophys. Res. Lett. 46, 1702–1708 (2019).
Frankignoul, C., Czaja, A. & L’Heveder, B. Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Clim. 11, 2310–2324 (1998).
Tokinaga, H. et al. Ocean frontal effects on the vertical development of clouds over the western North Pacific: in situ and satellite observations. J. Clim. 22, 4241–4260 (2009).
Nkwinkwa Njouodo, A. S., Koseki, S., Keenlyside, N. & Rouault, M. Atmospheric signature of the Agulhas current. Geophys. Res. Lett. 45, 5185–5193 (2018).
Heiderich, J. & Todd, R. E. Along-stream evolution of Gulf Stream volume transport. J. Phys. Oceanogr. 50, 2251–2270 (2020).
Kelly, K. A. et al. Western boundary currents and frontal air–sea interaction: Gulf Stream and Kuroshio Extension. J. Clim. 23, 5644–5667 (2010).
Beal, L. M. & Bryden, H. L. The velocity and vorticity structure of the Agulhas Current at 32°S. J. Geophys. Res. 104, 5151–5176 (1999).
Goni, G., Kamholz, S., Garzoli, S. & Olson, D. Dynamics of the Brazil‐Malvinas Confluence based on inverted echo sounders and altimetry. J. Geophys. Res. 101, 16273–16289 (1996).
Yook, S., Thompson, D. W. J., Sun, L. & Patrizio, C. The simulated atmospheric response to western North Pacific sea surface temperature anomalies. J. Clim. 35, 3335–3352 (2022).
Parfitt, R., Czaja, A. & Kwon, Y.-O. The impact of SST resolution change in the ERA‐Interim reanalysis on wintertime Gulf Stream frontal air‐sea interaction. Geophys. Res. Lett. 44, 3246–3254 (2017).
Parfitt, R. & Czaja, A. On the contribution of synoptic transients to the mean atmospheric state in the Gulf Stream region. Quart. J. R. Meteorol. Soc. 142, 1554–1561 (2015).
Parfitt, R. & Seo, H. A new framework for near‐surface wind convergence over the Kuroshio Extension and Gulf Stream in wintertime: the role of atmospheric fronts. Geophys. Res. Lett. 45, 9909–9918 (2018).
Masunaga, R., Nakamura, H., Taguchi, B. & Miyasaka, T. Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Gulf Stream and Agulhas return current in winter. J. Clim. 33, 9083–9101 (2020).
Masunaga, R., Nakamura, H., Taguchi, B. & Miyasaka, T. Processes shaping the frontal-scale time-mean surface wind convergence patterns around the Kuroshio Extension in winter. J. Clim. 33, 3–25 (2020).
Schneider, N. & Qiu, B. The atmospheric response to weak sea surface temperature fronts. J. Atmos. Sci. 72, 3356–3377 (2015).
Schneider, N. Scale and Rossby number dependence of observed wind responses to ocean-mesoscale sea surface temperatures. J. Atmos. Sci. 77, 3171–3192 (2020).
Small, R. J. et al. Near-surface wind convergence over the Gulf Stream—the role of SST revisited. J. Clim. 36, 5527–5548 (2023).
Patrizio, C. R. & Thompson, D. W. J. Quantifying the role of ocean dynamics in ocean mixed layer temperature variability. J. Clim. 34, 2567–2589 (2021).
Small, R. J., Bryan, F. O., Bishop, S. P. & Tomas, R. A. Air–sea turbulent heat fluxes in climate models and observational analyses: what drives their variability? J. Clim. 32, 2397–2421 (2019).
Small, R. J., Bryan, F. O., Bishop, S. P., Larson, S. & Tomas, R. A. What drives upper-ocean temperature variability in coupled climate models and observations? J. Clim. 33, 577–596 (2020).
Laurindo, L. C. et al. Role of ocean and atmosphere variability in scale‐dependent thermodynamic air‐sea interactions. J. Geophys. Res. Oceans 127, e2021JC018340 (2022).
Kirtman, B. P., Perlin, N. & Siqueira, L. Ocean eddies and climate predictability. Chaos 27, 126902 (2017).
Bishop, S. P., Small, R. J., Bryan, F. O. & Tomas, R. A. Scale dependence of midlatitude air–sea interaction. J. Clim. 30, 8207–8221 (2017).
Hoskins, B. J. & Karoly, D. J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981).
Sardeshmukh, P. D. & Hoskins, B. J. The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci. 45, 1228–1251 (1988).
Hersbach, H. et al. The ERA5 global reanalysis. Quart. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Huang, B. et al. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2021).
Huffman, G. J. et al. in Satellite Precipitation Measurement (eds Levizzani, V. et al.) Vol. 67, 343–353 (Springer, 2020).
Donlon, C. J. et al. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 116, 140–158 (2012).
Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).
Chang, P. et al. An unprecedented set of high‐resolution Earth system simulations for understanding multiscale interactions in climate variability and change. J. Adv. Model Earth Syst. 12, e2020MS002298 (2020).
Small, R. J. et al. A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Model. Earth Syst. 6, 1065–1094 (2014).
Hoskins, B. J. & Hodges, K. I. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 59, 1041–1061 (2002).
Hotta, D. & Nakamura, H. On the significance of the sensible heat supply from the ocean in the maintenance of the mean baroclinicity along storm tracks. J. Clim. 24, 3377–3401 (2011).
Sampe, T., Nakamura, H., Goto, A. & Ohfuchi, W. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Clim. 23, 1793–1814 (2010).
Brayshaw, D. J., Hoskins, B. & Blackburn, M. The basic ingredients of the North Atlantic storm track. Part II: sea surface temperatures. J. Atmos. Sci. 68, 1784–1805 (2011).
Saulière, J., Brayshaw, D. J., Hoskins, B. & Blackburn, M. Further investigation of the impact of idealized continents and SST distributions on the Northern Hemisphere storm tracks. J. Atmos. Sci. 69, 840–856 (2012).
Graff, L. S. & LaCasce, J. H. Changes in the extratropical storm tracks in response to changes in SST in an AGCM. J. Clim. 25, 1854–1870 (2012).
O’Reilly, C. H., Minobe, S. & Kuwano-Yoshida, A. The influence of the Gulf Stream on wintertime European blocking. Clim. Dyn. 47, 1545–1567 (2016).
Ma, X. et al. Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Clim. 30, 1861–1880 (2017).
Sheldon, L. et al. A ‘warm path’ for Gulf Stream–troposphere interactions. Tellus A Dyn. Meteorol. Oceanogr. 69, 1299397 (2017).
Kwon, Y.-O. et al. Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review. J. Clim. 23, 3249–3281 (2010).
Small, R. J., Msadek, R., Kwon, Y.-O., Booth, J. F. & Zarzycki, C. Atmosphere surface storm track response to resolved ocean mesoscale in two sets of global climate model experiments. Clim. Dyn. 52, 2067–2089 (2019).
Brayshaw, D. J., Hoskins, B. & Blackburn, M. The Storm-Track Response to Idealized SST Perturbations in an Aquaplanet GCM. J. Atmos. Sci. 65, 2842–2860 (2008).
O’Neill, L. W., Chelton, D. B. & Esbensen, S. K. Observations of SST-induced perturbations of the wind stress field over the Southern Ocean on seasonal timescales. J. Clim. 16, 2340–2354 (2003).
Chelton, D. B., Schlax, M. G., Samelson, R. M. & de Szoeke, R. A. Global observations of large oceanic eddies. Geophys. Res. Lett. 34, 2007GL030812 (2007).
Xie, S.-P. Satellite observations of cool ocean–atmosphere interaction. Bull. Am. Meteorol. Soc. 85, 195–208 (2004).
Risien, C. M. & Chelton, D. B. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr. 38, 2379–2413 (2008).
Small, R. J. et al. Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans 45, 274–319 (2008).
Brachet, S. et al. Atmospheric circulations induced by a midlatitude SST front: a GCM study. J. Clim. 25, 1847–1853 (2012).
O’Neill, L. W., Chelton, D. B. & Esbensen, S. K. The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Clim. 23, 255–281 (2010).
O’Neill, L. W., Haack, T., Chelton, D. B. & Skyllingstad, E. The Gulf Stream convergence zone in the time-mean winds. J. Atmos. Sci. 74, 2383–2412 (2017).
Putrasahan, D. A., Miller, A. J. & Seo, H. Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans 63, 60–78 (2013).
Vannière, B., Czaja, A., Dacre, H. & Woollings, T. A “cold path” for the Gulf Stream–troposphere connection. J. Clim. 30, 1363–1379 (2017).
Elson, P. et al. SciTools/cartopy: v.0.22.0. Zenodo https://doi.org/10.5281/zenodo.1182735 (2023).
Larson, J. Signature of the western boundary currents in local climate variability. https://doi.org/10.17605/OSF.IO/M84U2 (OSF, 2024).