• Wagen, C. C., McMinn, S. E., Kwan, E. E. & Jacobsen, E. N. Screening for generality in asymmetric catalysis. Nature 610, 680–686 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rein, J. et al. Generality-oriented optimization of enantioselective aminoxyl radical catalysis. Science 380, 706–712 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Betinol, I. O., Lai, J., Thakur, S. & Reid, J. P. A data-driven workflow for assigning and predicting generality in asymmetric catalysis. J. Am. Chem. Soc. 145, 12870–12883 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. et al. A multi-substrate screening approach for the identification of a broadly applicable Diels–Alder catalyst. Nat. Commun. 10, 770 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Angello, N. H. et al. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 378, 399–405 (2022).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Rinehart, N. I. et al. A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C–N couplings. Science 381, 965–972 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lattimore, T. & Szepesvári, C. Bandit Algorithms (Cambridge Univ. Press, 2020).

  • Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction 2nd edn (Bradford Books, 2018).

  • Slivkins, A. Introduction to multi-armed bandits. Preprint at arxiv.org/abs/1904.07272v7 (2019).

  • White, J. M. Bandit Algorithms for Website Optimization: Developing, Deploying, and Debugging (O’Reilly Media, 2013).

  • Ruiz-Castillo, P. & Buchwald, S. L. Applications of palladium-catalyzed C–N cross-coupling reactions. Chem. Rev. 116, 12564–12649 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolb, H. C., VanNieuwenhze, M. S. & Sharpless, K. B. Catalytic asymmetric dihydroxylation. Chem. Rev. 94, 2483–2547 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Chatterjee, S., Guidi, M., Seeberger, P. H. & Gilmore, K. Automated radial synthesis of organic molecules. Nature 579, 379–384 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Echtermeyer, A., Amar, Y., Zakrzewski, J. & Lapkin, A. Self-optimisation and model-based design of experiments for developing a C–H activation flow process. Beilstein J. Org. Chem. 13, 150–163 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coley, C. W., Abolhasani, M., Lin, H. & Jensen, K. F. Material‐efficient microfluidic platform for exploratory studies of visible‐light photoredox catalysis. Angew. Chem. Int. Ed. 56, 9847–9850 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Granda, J. M., Donina, L., Dragone, V., Long, D.-L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsieh, H.-W., Coley, C. W., Baumgartner, L. M., Jensen, K. F. & Robinson, R. I. Photoredox iridium-nickel dual catalyzed decarboxylative arylation cross-coupling: from batch to continuous flow via self-optimizing segmented flow reactor. Org. Process Res. Dev. 22, 542–550 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Schweidtmann, A. M. et al. Machine learning meets continuous flow chemistry: automated optimization towards the Pareto front of multiple objectives. Chem. Eng. J. 352, 277–282 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Häse, F., Aldeghi, M., Hickman, R. J., Roch, L. M. & Aspuru-Guzik, A. Gryffin: an algorithm for Bayesian optimization of categorical variables informed by expert knowledge. Appl. Phys. Rev. 8, 031406 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Taylor, C. J. et al. Accelerated chemical reaction optimization using multi-task learning. ACS Cent. Sci. 9, 957–968 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Z., Li, X. & Zare, R. N. Optimizing chemical reactions with deep reinforcement learning. ACS Cent. Sci. 3, 1337–1344 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Torres, J. A. G. et al. A multi-objective active learning platform and web app for reaction optimization. J. Am. Chem. Soc. 144, 19999–20007 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shields, B. J. et al. Bayesian reaction optimization as a tool for chemical synthesis. Nature 590, 89–96 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Häse, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a Bayesian optimizer for chemistry. ACS Cent. Sci. 4, 1134–1145 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clayton, A. D. et al. Algorithms for the self-optimisation of chemical reactions. React. Chem. Eng. 4, 1545–1554 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reker, D., Hoyt, E. A., Bernardes, G. J. L. & Rodrigues, T. Adaptive optimization of chemical reactions with minimal experimental information. Cell Rep. Phys. Sci. 1, 100247 (2020).

    Article 

    Google Scholar
     

  • Shim, E. et al. Predicting reaction conditions from limited data through active transfer learning. Chem. Sci. 13, 6655–6668 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, H. et al. Using machine learning to predict suitable conditions for organic reactions. ACS Cent. Sci. 4, 1465–1476 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozlowski, M. C. On the topic of substrate scope. Org. Lett. 24, 7247–7249 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gensch, T. & Glorius, F. The straight dope on the scope of chemical reactions. Science 352, 294–295 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dreher, S. D. Catalysis in medicinal chemistry. React. Chem. Eng. 4, 1530–1535 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kariofillis, S. K. et al. Using data science to guide aryl bromide substrate scope analysis in a Ni/photoredox-catalyzed cross-coupling with acetals as alcohol-derived radical sources. J. Am. Chem. Soc. 144, 1045–1055 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dreher, S. D. & Krska, S. W. Chemistry informer libraries: conception, early experience, and role in the future of cheminformatics. Acc. Chem. Res. 54, 1586–1596 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kullmer, C. N. P. et al. Accelerating reaction generality and mechanistic insight through additive mapping. Science 376, 532–539 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Taylor, C. J. et al. A brief introduction to chemical reaction optimization. Chem. Rev. 123, 3089–3126 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Svensson, H. G., Bjerrum, E. J., Tyrchan, C., Engkvist, O. & Chehreghani, M. H. Autonomous drug design with multi-armed bandits. In 2022 IEEE International Conference on Big Data 5584–5592 (IEEE, 2022).

  • Romeo Atance, S., Viguera Diez, J., Engkvist, O., Olsson, S. & Mercado, R. De novo drug design using reinforcement learning with graph-based deep generative models. J. Chem. Inf. Model. 62, 4863–4872 (2022).

    Article 

    Google Scholar
     

  • Xu, Z., Shim, E., Tewari, A. & Zimmerman, P. Adaptive sampling for discovery. In Proc. Advances in Neural Information Processing System Vol. 35, 1114–1126 (NeurIPS, 2022).

  • Kaufmann, E., Cappe, O. & Garivier, A. On Bayesian upper confidence bounds for bandit problems. In Proc. Machine Learning Research Vol. 22, 592–600 (PMLR, 2012).

  • Auer, P., Cesa-Bianchi, N. & Fischer, P. Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47, 235–256 (2002).

    Article 

    Google Scholar
     

  • Snoek, J. et al. Scalable Bayesian optimization using deep neural networks. In Proc. Machine Learning Research Vol. 27, 2171–2180 (PMLR, 2015).

  • Stevens, J. M. et al. Advancing base metal catalysis through data science: insight and predictive models for Ni-catalyzed borylation through supervised machine learning. Organometallics 41, 1847–1864 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Nielsen, M. K., Ahneman, D. T., Riera, O. & Doyle, A. G. Deoxyfluorination with sulfonyl fluorides: navigating reaction space with machine learning. J. Am. Chem. Soc. 140, 5004–5008 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, S. et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 361, eaar6236 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science 360, 186–190 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Faham, A. & Albericio, F. Peptide coupling reagents, more than a letter soup. Chem. Rev. 111, 6557–6602 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dombrowski, A. W., Aguirre, A. L., Shrestha, A., Sarris, K. A. & Wang, Y. The chosen few: parallel library reaction methodologies for drug discovery. J. Org. Chem. 87, 1880–1897 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matheron, G. Principles of geostatistics. Econ. Geol. 58, 1246–1266 (1963).

    Article 
    CAS 

    Google Scholar
     

  • Zimmerman, D., Pavlik, C., Ruggles, A. & Armstrong, M. P. An experimental comparison of ordinary and universal kriging and inverse distance weighting. Math. Geol. 31, 375–390 (1999).

    Article 

    Google Scholar
     

  • Magano, J. Large-scale amidations in process chemistry: practical considerations for reagent selection and reaction execution. Org. Process Res. Dev. 26, 1562–1689 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Beutner, G. L. et al. TCFH–NMI: direct access to N-acyl imidazoliums for challenging amide bond formations. Org. Lett. 20, 4218–4222 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stevens, J. M. et al. Leveraging high-throughput experimentation to drive pharmaceutical route invention: a four-step commercial synthesis of branebrutinib (BMS-986195). Org. Process Res. Dev. 26, 1174–1183 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sperry, J. B. et al. Thermal stability assessment of peptide coupling reagents commonly used in pharmaceutical manufacturing. Org. Process Res. Dev. 22, 1262–1275 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, B. et al. Preparation of the HIV attachment inhibitor BMS-663068. Part 6. Friedel–Crafts acylation/hydrolysis and amidation. Org. Process Res. Dev. 21, 1145–1155 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Krishnan, K. K., Ujwaldev, S. M., Sindhu, K. S. & Anilkumar, G. Recent advances in the transition metal catalyzed etherification reactions. Tetrahedron 72, 7393–7407 (2016).

    Article 

    Google Scholar
     

  • Fuhrmann, E. & Talbiersky, J. Synthesis of alkyl aryl ethers by catalytic Williamson ether synthesis with weak alkylation agents. Org. Process Res. Dev. 9, 206–211 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Swamy, K. C. K., Kumar, N. N. B., Balaraman, E. & Kumar, K. V. P. P. Mitsunobu and related reactions: advances and applications. Chem. Rev. 109, 2551–2651 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link


    administrator