Pinsonneault, M. H., DePoy, D. L. & Coffee, M. The mass of the convective zone in FGK main-sequence stars and the effect of accreted planetary material on apparent metallicity determinations. Astrophys. J. Lett. 556, L59–L62 (2001).
Hühn, L. A. & Bitsch, B. How accretion of planet-forming disks influences stellar abundances. Astron. Astrophys. 676, 87 (2023).
Meléndez, J., Asplund, M., Gustafsson, B. & Yong, D. The peculiar solar composition and its possible relation to planet formation. Astrophys. J. Lett. 704, L66–L70 (2009).
Booth, R. A. & Owen, J. E. Fingerprints of giant planets in the composition of solar twins. Mon. Not. R. Astron. Soc. 493, 5079–5088 (2020).
Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).
Chambers, J. E. Stellar elemental abundance patterns: implications for planet formation. Astrophys. J. 724, 92–97 (2010).
Adibekyan, V. Tc trends and clues to Galactic evolution. Astron. Astrophys. 564, L15 (2014).
Nissen, P. E. High-precision abundances of elements in solar twin stars. Trends with stellar age and elemental condensation temperature. Astron. Astrophys. 579, 52 (2015).
Ramírez, I. et al. The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system. Astrophys. J. 808, 13 (2015).
Saffe, C. Implications for chemical tagging studies. Astron. Astrophys. 604, L4 (2017).
Oh, S. et al. Kronos and Krios: evidence for accretion of a massive, rocky planetary system in a comoving pair of solar-type stars. Astrophys. J. 854, 138 (2018).
Nagar, T., Spina, L. & Karakas, A. I. The chemical signatures of planetary engulfment events in binary systems. Astrophys. J. Lett. 888, L9 (2020).
Galarza, J. Y., López-Valdivia, R. & Meléndez, J. Evidence of rocky planet engulfment in the wide binary system HIP 71726/HIP 71737. Astrophys. J. 922, 129 (2021).
Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, 1 (2021).
Kamdar, H. et al. Stars that move together were born together. Astrophys. J. Lett. 884, L42 (2019).
Nelson, T. et al. Distant relatives: the chemical homogeneity of comoving pairs identified in Gaia. Astrophys. J. 921, 118 (2021).
Dotter, A., Conroy, C., Cargile, P. & Asplund, M. The influence of atomic diffusion on stellar ages and chemical tagging. Astrophys. J. 840, 99 (2017).
Yong, D. et al. C3PO: towards a complete census of co-moving pairs of stars. I. High precision stellar parameters for 250 stars. Mon. Not. R. Astron. Soc. 526, 2181–2195 (2023).
Behmard, A., Dai, F., Brewer, J. M., Berger, T. A. & Howard, A. W. Planet engulfment detections are rare according to observations and stellar modelling. Mon. Not. R. Astron. Soc. 521, 2969–2987 (2023).
Ramírez, I., Meléndez, J. & Asplund, M. Accurate abundance patterns of solar twins and analogs. Does the anomalous solar chemical composition come from planet formation? Astron. Astrophys. 508, L17–L20 (2009).
Bitsch, B. & Izidoro, A. Giants are bullies: how their growth influences systems of inner sub-Neptunes and super-Earths. Astron. Astrophys. 674, 178 (2023).
Spina, L. et al. Chemical evidence for planetary ingestion in a quarter of Sun-like stars. Nat. Astron. 5, 1163–1169 (2021).
Tayar, J. & Joyce, M. Is thermohaline mixing the full story? Evidence for separate mixing events near the red giant branch bump. Astrophys. J. Lett. 935, L30 (2022).
Traxler, A., Garaud, P. & Stellmach, S. Numerically determined transport laws for fingering (‘thermohaline’) convection in astrophysics. Astrophys. J. Lett. 728, L29 (2011).
Brown, J. M., Pascale, G. & Stellmach, S. Chemical transport and spontaneous layer formation in fingering convection in astrophysics. Astrophys. J. 768, 34 (2013).
Izidoro, A. et al. Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains. Astron. Astrophys. 650, 152 (2021).
Matsumoto, Y. & Ogihara, M. Breaking resonant chains: destabilization of resonant planets due to long-term mass evolution. Astrophys. J. 893, 43 (2020).
Fressin, F. et al. The false positive rate of Kepler and the occurrence of planets. Astrophys. J. 766, 81 (2013).
Mulders, G. D., Pascucci, I., Apai, D. & Ciesla, F. J. The Exoplanet Population Observation Simulator. I. The inner edges of planetary systems. Astron. J. 156, 24–43 (2018).
Liu, F. et al. Detailed chemical compositions of planet-hosting stars—I. Exploration of possible planet signatures. Mon. Not. R. Astron. Soc. 495, 3961–3973 (2020).
Liu, F. et al. Detailed elemental abundances of binary stars: searching for signatures of planet formation and atomic diffusion. Mon. Not. R. Astron. Soc. 508, 1227–1240 (2021).
Liu, F., Asplund, M., Ramírez, I., Yong, D. & Meléndez, J. A high-precision chemical abundance analysis of the HAT-P-1 stellar binary: constraints on planet formation. Mon. Not. R. Astron. Soc. 442, L51–L55 (2014).
Meléndez, J. et al. The remarkable solar twin HIP 56948: a prime target in the quest for other Earths. Astron. Astrophys. 543, 29 (2012).
McKenzie, M. et al. The complex stellar system M 22: confirming abundance variations with high precision differential measurements. Mon. Not. R. Astron. Soc. 516, 3515–3531 (2022).
Sneden, C. The nitrogen abundance of the very metal-poor star HD 122563. Astrophys. J. 184, 839–849 (1973).
Sobeck, J. S. et al. The abundances of neutron-capture species in the very metal-poor globular cluster M15: a uniform analysis of red giant branch and red horizontal branch stars. Astron. J. 141, 175–192 (2011).
Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. In Proc. IAU Symposium Vol. 210 (eds Piskunov, N. et al.) 20 (Cambridge University Press, 2003).
Kurucz, R. & Bell, B. Atomic line data. in Kurucz CD-ROM No. 23 (Harvard-Smithsonian Centre for Astrophysics, 1995); http://kurucz.harvard.edu/linelists.html.
Battistini, C. & Bensby, T. The origin and evolution of the odd-Z iron-peak elements Sc, V, Mn, and Co in the Milky Way stellar disk. Astron. Astrophys. 577, 9 (2015).
Amarsi, A. M., Asplund, M., Collet, R. & Leenaarts, J. Non-LTE oxygen line formation in 3D hydrodynamic model stellar atmospheres. Mon. Not. R. Astron. Soc. 455, 3735–3751 (2016).
Lind, K., Asplund, M., Barklem, P. S. & Belyaev, A. K. Non-LTE calculations for neutral Na in late-type stars using improved atomic data. Astron. Astrophys. 528, 103 (2011).
Bergemann, M. et al. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and <3D> models. I. Methods and application to magnesium abundances in standard stars. Astrophys. J. 847, 15 (2017).
Nordlander, T. & Lind, K. Non-LTE aluminium abundances in late-type stars. Astron. Astrophys. 607, 75 (2017).
Bergemann, M. et al. Observational constraints on the origin of the elements. I. 3D NLTE formation of Mn lines in late-type stars. Astron. Astrophys. 631, 80 (2019).
Bensby, T., Feltzing, S. & Oey, M. S. Exploring the Milky Way stellar disk. A detailed elemental abundance study of 714 F and G dwarf stars in the solar neighbourhood. Astron. Astrophys. 562, 71 (2014).
Speagle, J. S. DYNESTY: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Mon. Not. R. Astron. Soc. 493, 3132–3158 (2020).
Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).
Michaud, G., Fontaine, G. & Beaudet, G. The lithium abundance—constraints on stellar evolution. Astrophys. J. 282, 206–213 (1984).
Liu, F. et al. Chemical (in)homogeneity and atomic diffusion in the open cluster M 67. Astron. Astrophys. 627, 117 (2019).
Théado, S. & Vauclair, S. Metal-rich accretion and thermohaline instabilities in exoplanet-host stars: consequences on the light elements abundances. Astrophys. J. 744, 123 (2012).