• Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kapitza, P. Viscosity of liquid helium below the λ-point. Nature 141, 74 (1938).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Allen, J. F. & Misener, A. Flow of liquid helium II. Nature 141, 75 (1938).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba–La–Cu–O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Micheli, A., Brennen, G. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nat. Phys. 2, 341–347 (2006).

    Article 
    CAS 

    Google Scholar
     

  • DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsuda, K. et al. Resonant collisional shielding of reactive molecules using electric fields. Science 370, 1324–1327 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Anderegg, L. et al. Observation of microwave shielding of ultracold molecules. Science 373, 779–782 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt, M., Lassablière, L., Quéméner, G. & Langen, T. Self-bound dipolar droplets and supersolids in molecular Bose-Einstein condensates. Phys. Rev. Res. 4, 013235 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Büchler, H. P. et al. Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. Phys. Rev. Lett. 98, 060404 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yao, N. Y., Zaletel, M. P., Stamper-Kurn, D. M. & Vishwanath, A. A quantum dipolar spin liquid. Nat. Phys. 14, 405–410 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Inouye, S. et al. Observation of feshbach resonances in a bose–einstein condensate. Nature 392, 151–154 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zwerger, W. The BCS-BEC Crossover and the Unitary Fermi Gas Lecture Notes in Physics, Vol. 836 (Springer Science & Business Media, 2011).

  • Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Lahaye, T. et al. Strong dipolar effects in a quantum ferrofluid. Nature 448, 672–675 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).


    Google Scholar
     

  • Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).


    Google Scholar
     

  • Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    CAS 

    Google Scholar
     

  • Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilks, J. The Properties of Liquid and Solid Helium (Clarendon, 1967).

  • Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Laughlin, R. B. Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article 
    ADS 

    Google Scholar
     

  • Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pollet, L., Picon, J., Büchler, H. & Troyer, M. Supersolid phase with cold polar molecules on a triangular lattice. Phys. Rev. Lett. 104, 125302 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Góral, K., Santos, L. & Lewenstein, M. Quantum phases of dipolar bosons in optical lattices. Phys. Rev. Lett. 88, 170406 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Żuchowski, P. S. & Hutson, J. M. Reactions of ultracold alkali-metal dimers. Phys. Rev. A 81, 060703 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Takekoshi, T. et al. Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. Phys. Rev. Lett. 113, 205301 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Molony, P. K. et al. Creation of ultracold 87Rb133Cs molecules in the rovibrational ground state. Phys. Rev. Lett. 113, 255301 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Park, J. W., Will, S. A. & Zwierlein, M. W. Ultracold dipolar gas of fermionic 23Na40K molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ye, X., Guo, M., González-Martínez, M. L., Quéméner, G. & Wang, D. Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities. Sci. Adv. 4, eaaq0083 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gregory, P. D. et al. Sticky collisions of ultracold RbCs molecules. Nat. Commun. 10, 3104 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bause, R. et al. Collisions of ultracold molecules in bright and dark optical dipole traps. Phys. Rev. Res. 3, 033013 (2021).

    Article 
    CAS 

    Google Scholar
     

  • De Marco, L. et al. A degenerate fermi gas of polar molecules. Science 363, 853–856 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Duda, M. et al. Transition from a polaronic condensate to a degenerate fermi gas of heteronuclear molecules. Nat. Phys. 19, 720–725 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Cooper, N. & Shlyapnikov, G. V. Stable topological superfluid phase of ultracold polar fermionic molecules. Phys. Rev. Lett. 103, 155302 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Micheli, A. et al. Universal rates for reactive ultracold polar molecules in reduced dimensions. Phys. Rev. Lett. 105, 073202 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lassablière, L. & Quéméner, G. Controlling the scattering length of ultracold dipolar molecules. Phys. Rev. Lett. 121, 163402 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules. Phys. Rev. Lett. 121, 163401 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schindewolf, A. et al. Evaporation of microwave-shielded polar molecules to quantum degeneracy. Nature 607, 677–681 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Julienne, P. S., Hanna, T. M. & Idziaszek, Z. Universal ultracold collision rates for polar molecules of two alkali-metal atoms. Phys. Chem. Chem. Phys. 13, 19114–19124 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bigagli, N. et al. Collisionally stable gas of bosonic dipolar ground-state molecules. Nat. Phys. 19, 1579–1584 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lin, J. et al. Microwave shielding of bosonic NaRb molecules. Phys. Rev. X 13, 031032 (2023).

    CAS 

    Google Scholar
     

  • Avdeenkov, A. & Bohn, J. L. Linking ultracold polar molecules. Phys. Rev. Lett. 90, 043006 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, X.-Y. et al. Ultracold field-linked tetratomic molecules. Nature 626, 283–287 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Micheli, A., Pupillo, G., Büchler, H. & Zoller, P. Cold polar molecules in two-dimensional traps: tailoring interactions with external fields for novel quantum phases. Phys. Rev. A 76, 043604 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Gorshkov, A. V. et al. Suppression of inelastic collisions between polar molecules with a repulsive shield. Phys. Rev. Lett. 101, 073201 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Son, H., Park, J. J., Ketterle, W. & Jamison, A. O. Collisional cooling of ultracold molecules. Nature 580, 197–200 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J.-R. et al. Tuning of dipolar interactions and evaporative cooling in a three-dimensional molecular quantum gas. Nat. Phys. 17, 1144–1148 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mewes, M.-O. et al. Bose-Einstein condensation in a tightly confining dc magnetic trap. Phys. Rev. Lett. 77, 416–419 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dagdigian, P. J. & Wharton, L. Molecular beam electric deflection and resonance spectroscopy of the heteronuclear alkali dimers: 39K7Li, Rb7Li, 39K23Na, Rb23Na, and 133Cs23Na. J. Chem. Phys. 57, 1487–1496 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Capogrosso-Sansone, B., Trefzger, C., Lewenstein, M., Zoller, P. & Pupillo, G. Quantum phases of cold polar molecules in 2D optical lattices. Phys. Rev. Lett. 104, 125301 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorshkov, A. V. et al. Tunable superfluidity and quantum magnetism with ultracold polar molecules. Phys. Rev. Lett. 107, 115301 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Manmana, S. R., Stoudenmire, E., Hazzard, K. R., Rey, A. M. & Gorshkov, A. V. Topological phases in ultracold polar-molecule quantum magnets. Phys. Rev. B 87, 081106 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Büchler, H., Micheli, A. & Zoller, P. Three-body interactions with cold polar molecules. Nat. Phys. 3, 726–731 (2007).

    Article 

    Google Scholar
     

  • Warner, C. et al. Overlapping Bose-Einstein condensates of 23Na and 133Cs. Phys. Rev. A 104, 033302 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lam, A. Z. et al. High phase-space density gas of NaCs Feshbach molecules. Phys. Rev. Res. 4, L022019 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Stevenson, I. et al. Ultracold gas of dipolar NaCs ground state molecules. Phys. Rev. Lett. 130, 113022 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Warner, C. et al. Efficient pathway to nacs ground state molecules. New J. Phys. 25, 053036 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, W. et al. A planar cloverleaf antenna for circularly polarized microwave fields in atomic and molecular physics experiments. Rev. Sci. Instrum. 94, 123201 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Söding, J. et al. Three-body decay of a rubidium Bose–Einstein condensate. Appl. Phys. B 69, 257–261 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Karman, T. & Hutson, J. M. Microwave shielding of ultracold polar molecules with imperfectly circular polarization. Phys. Rev. A 100, 052704 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Colbert, D. T. & Miller, W. H. A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method. J. Chem. Phys. 96, 1982–1991 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     



  • Source link