• Sau, J. D. & Sarma, S. D. Realizing a robust practical Majorana chain in a quantum-dot-superconductor linear array. Nat. Commun. 3, 964 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Leijnse, M. & Flensberg, K. Parity qubits and poor man’s Majorana bound states in double quantum dots. Phys. Rev. B 86, 134528 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Fulga, I. C., Haim, A., Akhmerov, A. R. & Oreg, Y. Adaptive tuning of Majorana fermions in a quantum dot chain. New J. Phys. 15, 045020 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dvir, T. et al. Realization of a minimal Kitaev chain in coupled quantum dots. Nature 614, 445 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsintzis, A., Souto, R. S. & Leijnse, M. Creating and detecting poor man’s Majorana bound states in interacting quantum dots. Phys. Rev. B 106, L201404 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tsintzis, A., Souto, R. S., Flensberg, K., Danon, J. & Leijnse, M. Majorana qubits and non-abelian physics in quantum dot–based minimal Kitaev chains. PRX Quantum 5, 010323 (2024).

  • Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures. Phys. Rev. Lett. 105, 077001 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105, 177002 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Prada, E. et al. From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires. Nat. Rev. Phys. 2, 575 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C.-X., Sau, J. D., Stanescu, T. D. & Das Sarma, S. Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Vuik, A., Nijholt, B., Akhmerov, A. R. & Wimmer, M. Reproducing topological properties with quasi-Majorana states. SciPost Phys. 7, 061 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Pan, H. & Das Sarma, S. Physical mechanisms for zero-bias conductance peaks in Majorana nanowires. Phys. Rev. Res. 2, 013377 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Physics-Usphekhi 44, 131 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Széchenyi, G. & Pályi, A. Parity-to-charge conversion for readout of topological Majorana qubits. Phys. Rev. B 101, 235441 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Boross, P. & Pályi, A. Braiding-based quantum control of a Majorana qubit built from quantum dots. Phys. Rev. B 109, 125410 (2024).

  • Liu, C.-X., Pan, H., Setiawan, F., Wimmer, M. & Sau, J. D. Fusion protocol for Majorana modes in coupled quantum dots. Phys. Rev. B 108, 085437 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sedlmayr, N. & Bena, C. Visualizing Majorana bound states in one and two dimensions using the generalized Majorana polarization. Phys. Rev. B 92, 115115 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Liu, C.-X., Wang, G., Dvir, T. & Wimmer, M. Tunable superconducting coupling of quantum dots via Andreev bound states in semiconductor–superconductor nanowires. Phys. Rev. Lett. 129, 267701 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bordin, A. et al. Tunable crossed Andreev reflection and elastic cotunneling in hybrid nanowires. Phys. Rev. X 13, 031031 (2023).

    CAS 

    Google Scholar
     

  • Wang, G. et al. Singlet and triplet Cooper pair splitting in hybrid superconducting nanowires. Nature 612, 448 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C.-X. et al. Enhancing the excitation gap of a quantum-dot-based Kitaev chain. Preprint at https://arxiv.org/abs/2310.09106 (2023).

  • Zatelli, F. et al. Robust poor man’s Majorana zero modes using Yu-Shiba-Rusinov states. Preprint at https://arxiv.org/abs/2311.03193 (2023).

  • Meng, T., Florens, S. & Simon, P. Self-consistent description of Andreev bound states in Josephson quantum dot devices. Phys. Rev. B 79, 224521 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Grove-Rasmussen, K. et al. Superconductivity-enhanced bias spectroscopy in carbon nanotube quantum dots. Phys. Rev. B 79, 134518 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Deacon, R. S. et al. Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett. 104, 076805 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, E. J. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nat. Nanotechnol. 9, 79 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jellinggaard, A., Grove-Rasmussen, K., Madsen, M. H. & Nygård, J. Tuning Yu-Shiba-Rusinov states in a quantum dot. Phys. Rev. B 94, 064520 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Grove-Rasmussen, K. et al. Yu-Shiba-Rusinov screening of spins in double quantum dots. Nat. Commun. 9, 2376 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. et al. Triplet correlations in Cooper pair splitters realized in a two-dimensional electron gas. Nat. Commun. 14, 4876 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dai, L., Kuo, W. & Chung, M.-C. Extracting entangled qubits from Majorana fermions in quantum dot chains through the measurement of parity. Sci. Rep. 5, 11188 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pino, D. M., Souto, R. S. & Aguado, R. Minimal Kitaev-transmon qubit based on double quantum dots. Phys. Rev. B 109, 075101 (2024).

  • Clarke, D. J. Experimentally accessible topological quality factor for wires with zero energy modes. Phys. Rev. B 96, 201109 (2017).

    Article 

    Google Scholar
     

  • Prada, E., Aguado, R. & San-Jose, P. Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B 96, 085418 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Souto, R. S., Tsintzis, A., Leijnse, M. & Danon, J. Probing Majorana localization in minimal Kitaev chains through a quantum dot. Phys. Rev. Res. 5, 043182 (2023).

  • Möhle, C. M. et al. Controlling Andreev bound states with the magnetic vector potential. Nano Lett. 22, 8601 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Martinez, E. A. et al. Measurement circuit effects in three-terminal electrical transport measurements. Preprint at https://arxiv.org/abs/2104.02671 (2021).

  • ten Haaf, S. L. D. Data and code for “A two-site Kitaev chain in a two-dimensional electron gas”. Zenodo https://doi.org/10.5281/zenodo.10801215 (2024).



  • Source link