Young, R. J. & Lovell, P. A. Introduction to Polymers (CRC Press, 2011).
Sun, J.-Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).
Sun, T. L. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 12, 932–937 (2013).
Wang, M., Hu, J. & Dickey, M. D. Tough ionogels: synthesis, toughening mechanisms, and mechanical properties─a perspective. JACS Au 2, 2645–2657 (2022).
Wang, M., Hu, J. & Dickey, M. D. Emerging applications of tough ionogels. NPG Asia Mater. 15, 66 (2023).
Wang, M. et al. Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 21, 359–365 (2022).
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).
Fan, H. & Gong, J. P. Fabrication of bioinspired hydrogels: challenges and opportunities. Macromolecules 53, 2769–2782 (2020).
Ueki, T. & Watanabe, M. Polymers in ionic liquids: dawn of neoteric solvents and innovative materials. Bull. Chem. Soc. Jpn 85, 33–50 (2012).
Liu, X., Liu, J., Lin, S. & Zhao, X. Hydrogel machines. Mater. Today 36, 102–124 (2020).
Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double‐network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).
Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).
Kim, J., Zhang, G., Shi, M. & Suo, Z. Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links. Science 374, 212–216 (2021).
Kamiyama, Y. et al. Highly stretchable and self-healable polymer gels from physical entanglements of ultrahigh–molecular weight polymers. Sci. Adv. 8, eadd0226 (2022).
Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).
Corkhill, P. H., Trevett, A. S. & Tighe, B. J. The potential of hydrogels as synthetic articular cartilage. Proc. Inst. Mech. Eng. H 204, 147–155 (1990).
Cao, Z., Liu, H. & Jiang, L. Transparent, mechanically robust, and ultrastable ionogels enabled by hydrogen bonding between elastomers and ionic liquids. Mater. Horiz. 7, 912–918 (2020).
Yu, L. et al. Highly tough, Li‐metal compatible organic–inorganic double‐network solvate ionogel. Adv. Energy Mater. 9, 1900257 (2019).
Ren, Y. et al. Ionic liquid–based click-ionogels. Sci. Adv. 5, eaax0648 (2019).
Gallagher, A. J. et al. Dynamic tensile properties of human skin. In 2012 IRCOBI Conference Proc. 494–502 (International Research Council on the Biomechanics of Injury, 2012).
Sato, K. et al. Phase‐separation‐induced anomalous stiffening, toughening, and self‐healing of polyacrylamide gels. Adv. Mater. 27, 6990–6998 (2015).
Zhang, H. J. et al. Tough physical double‐network hydrogels based on amphiphilic triblock copolymers. Adv. Mater. 28, 4884–4890 (2016).
Joodaki, H. & Panzer, M. B. Skin mechanical properties and modeling: a review. Proc. Inst. Mech. Eng. H 232, 323–343 (2018).
Wang, Y. J. et al. Ultrastiff and tough supramolecular hydrogels with a dense and robust hydrogen bond network. Chem. Mater. 31, 1430–1440 (2019).
Weng, D. et al. Polymeric complex-based transparent and healable ionogels with high mechanical strength and ionic conductivity as reliable strain sensors. ACS Appl. Mater. Interfaces 12, 57477–57485 (2020).
Zhang, X., Du, C., Du, M., Zheng, Q. & Wu, Z. L. Kinetic insights into glassy hydrogels with hydrogen bond complexes as the cross-links. Mater. Today Phys. 15, 100230 (2020).
Hu, X., Vatankhah‐Varnoosfaderani, M., Zhou, J., Li, Q. & Sheiko, S. S. Weak hydrogen bonding enables hard, strong, tough, and elastic hydrogels. Adv. Mater. 27, 6899–6905 (2015).
Yarger, J. L., Cherry, B. R. & van Der Vaart, A. Uncovering the structure–function relationship in spider silk. Nat. Rev. Mater. 3, 18008 (2018).
Guo, Y. et al. Enhancing impact resistance of polymer blends via self-assembled nanoscale interfacial structures. Macromolecules 51, 3897–3910 (2018).
Liu, J. et al. Polystyrene glasses under compression: ductile and brittle responses. ACS Macro Lett. 4, 1072–1076 (2015).
Zhu, H. et al. Biobased plasticizers from tartaric acid: synthesis and effect of alkyl chain length on the properties of poly(vinyl chloride). ACS Omega 6, 13161–13169 (2021).
Pita, V. J. R. R., Sampaio, E. E. M. & Monteiro, E. E. C. Mechanical properties evaluation of PVC/plasticizers and PVC/thermoplastic polyurethane blends from extrusion processing. Polym. Test. 21, 545–550 (2002).
Huang, Q., Wan, C., Loveridge, M. & Bhagat, R. Partially neutralized polyacrylic acid/poly(vinyl alcohol) blends as effective binders for high-performance silicon anodes in lithium-ion batteries. ACS Appl. Energy Mater. 1, 6890–6898 (2018).
Eisenberg, A., Yokoyama, T. & Sambalido, E. Dehydration kinetics and glass transition of poly(acrylic acid). J. Polym. Sci. 7, 1717–1728 (1969).
Song, P. A., Yu, Y., Wu, Q. & Fu, S. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending. Nanoscale Res. Lett. 7, 355 (2012).
Max, J.-J. & Chapados, C. Infrared spectroscopy of aqueous carboxylic acids: comparison between different acids and their salts. J. Phys. Chem. A 108, 3324–3337 (2004).
Parikh, S. J., Mukome, F. N. D. & Zhang, X. ATR–FTIR spectroscopic evidence for biomolecular phosphorus and carboxyl groups facilitating bacterial adhesion to iron oxides. Colloids Surf. B Biointerfaces 119, 38–46 (2014).
Rungrodnimitchai, S. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. Sci. World J. 2014, 634837 (2014).
Qu, J. et al. Synergistic effects between phosphonium‐alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv. Mater. 27, 4767–4774 (2015).
Swatloski, R. P., Spear, S. K., Holbrey, J. D. & Rogers, R. D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).